• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revision576c2b8dd7db3ed275c39a6ddfdec5a813fc998e (tree)
Time2008-10-01 19:42:33
Authoriselllo
Commiteriselllo

Log Message

I simply removed a few typos from the manuscript.

Change Summary

Incremental Difference

diff -r 323ab84bc8b3 -r 576c2b8dd7db latex-documents/intro_smoluchowski.tex
--- a/latex-documents/intro_smoluchowski.tex Wed Oct 01 10:41:42 2008 +0000
+++ b/latex-documents/intro_smoluchowski.tex Wed Oct 01 10:42:33 2008 +0000
@@ -142,7 +142,7 @@
142142 The code I emailed you is one of my research codes to solve Smoluchowski equation (a
143143 population-balance equation useful to investigate agglomeration
144144 problems).
145-Consider a set of fundamental units, spherules hereafter called
145+Consider a set of fundamental units, spherules, hereafter called
146146 monomers.
147147 A $k$-mer is an object formed by $k$ monomers. They can coalesce,
148148 giving rise to a sphere, or retain their identity giving rise to more
@@ -159,18 +159,21 @@
159159 \label{eq:volume_conservation}
160160 \nu_k=\nu_i+\nu_j,
161161 \end{equation}
162-whereas the radius of the resulting sphere is given by:
162+where $\nu_k=k\nu_1$ is the $k$-mer volume (of course $k$ times the
163+one of a monomer).
164+The radius of the resulting sphere is given by:
163165 \begin{equation}
164166 \label{eq:radius_final}
165- R_k=(R_i^3+R_k^3)^{1/3}.
167+ R_k=(R_i^3+R_j^3)^{1/3}.
166168 \end{equation}
169+
167170 As time progresses, the total volume is conserved, whereas the overall
168171 particle concentration, $N_\infty=\s_kn_k$, inevitably decays with time.
169172 An initially monodisperse (i.e. consisting of monomers only)
170173 distribution will evolve, as time progresses, and spread covering
171174 larger sizes ($k\gg 1$).
172175 The ``direct'' approach consists in binning the initial distribution
173-with a uniform bin structure (i.e. where the $k$-th
176+with a linear (i.e. uniformly-spaced) bin structure (i.e. where the $k$-th
174177 bin contains $k$-mers only)
175178 and solving Eq. \ref{eq:smoluchowski} in each bin.
176179 This quickly
@@ -182,9 +185,9 @@
182185 \label{eq:smolu_garrick}
183186 \f{dn_k}{dt}=\f{1}{2}\s_{ij}\chi_{ijk}\beta_{ij}n_in_j-n_k\s_i\beta_{ik}n_k,
184187 \end{equation}
185-where $\chi_ijk$ is the so-called splitting operator re-distributing
188+where $\chi_{ijk}$ is the so-called splitting operator re-distributing
186189 the newly-created particles into different bins.
187-This allows the use of non-uniform (typically logarithmically spaced)
190+This allows the use of a non-uniformly-spaced (typically logarithmically-spaced)
188191 bin structure, thus saving a lot of computational time.
189192
190193