• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revision1769ee7ee4c3892a55582399c129c4f9aa815e2f (tree)
Time2007-05-22 01:22:46
Authoriselllo
Commiteriselllo

Log Message

I modified the code Python-codes/postprocess2.py. It now goes reading
the output files to postprocess in an upper directory.
Furthermore, I cleaned up its structures so that it does not do the same
job twice when calculating the mean and saving up the results. I
fundamentally added some if-conditions and slightly changed the way in
which the results are saved into text files. I checked against the
previous versions of the code that it returns the same results as in the
past.

Change Summary

Incremental Difference

diff -r 2446f6bb7d26 -r 1769ee7ee4c3 Python-codes/postprocess2.py
--- a/Python-codes/postprocess2.py Wed May 16 13:52:40 2007 +0000
+++ b/Python-codes/postprocess2.py Mon May 21 16:22:46 2007 +0000
@@ -13,12 +13,13 @@
1313
1414 def readq(n1,n2,n3,n_snap_ini,n_snap_fin,name,z_pos,theta_pos,readmean):
1515 #q3arr=zeros((n1,n2,n3))
16- q3arr=zeros(n1*n2*n3)
17- qmean=zeros(n1*n2*n3)
18- v_rms=zeros(n1*n2*n3)
19- if (readmean==1):
20- name_bis='means_v_z_3D%03d'%n_snap_fin
21- qmean=pylab.load(name_bis)
16+ if (readmean !=1): # I calculate the mean velocity
17+ q3arr=zeros(n1*n2*n3)
18+ elif (readmean ==1): # I read the mean the velocity & calculate the rms
19+ qmean=zeros(n1*n2*n3)
20+ v_rms=zeros(n1*n2*n3)
21+ name_bis='means_v_z_3D%03d'%n_snap_fin
22+ qmean=pylab.load(name_bis)
2223 #fluctuations=zeros((n2,(n_snap_fin-n_snap_ini+1)))
2324 #flu_av=zeros(n2)
2425 jcount=0
@@ -26,54 +27,60 @@
2627 print 'l is', l
2728 fname = name%l # %03d pads the integers with zeros
2829 temp_arr=pylab.load(fname) # loading
29- q3arr[:]=temp_arr[:]+q3arr[:]
30- if (readmean==1):
30+ if (readmean != 1): # I define the array I need for the mean velocity
31+ q3arr[:]=temp_arr[:]+q3arr[:]
32+ elif (readmean==1): # I define the array for the rms & I simply read the\
33+ #mean velocity I had already calculated
3134 v_rms[:]=(temp_arr[:]-qmean[:])*(temp_arr[:]-qmean[:])+v_rms[:]
32-
3335 jcount=jcount+1
3436 #print 'the dimension of q3arr is', shape(q3arr)
3537 #now I divide by the number of snapshots in order to have a mean field
36- q3arr=q3arr/float(n_snap_fin-n_snap_ini+1.) #I first take a temporal mean
37- name_bis='means_v_z_3D%03d'%n_snap_fin
38- pylab.save(name_bis,q3arr)
39- v_rms=v_rms/float(n_snap_fin-n_snap_ini+1.) # temporal mean of v_rms
40- q3arr=reshape(q3arr,[n1,n2,n3])
41- v_rms=reshape(v_rms,[n1,n2,n3])
42- my_mean=zeros(n2)
43- my_v_rms=zeros(n2)
44-
45-
46-#The following lines are a much faster and cleaner way to deal with the means along theta
47-# and r
48- my_mean=q3arr.mean(axis=0).mean(axis=1)
49- my_v_rms=v_rms.mean(axis=0).mean(axis=1)
50- my_v_rms=sqrt(my_v_rms)
51- #now I work out the average v_z(r) for a specific z (average on a tube cross
52- #section)
53- mean_cross=zeros(n2)
54- #for i in range(0,n1):
55- #mean_cross[:]= q3arr[i,:,z_pos]+mean_cross[:]
56- #mean_cross=mean_cross/n1
57- mean_cross=q3arr[:,:,z_pos].mean(axis=0)
58- #finally I work out the temporal mean for a specific theta and x
59- mean_theta=q3arr[theta_pos,:,z_pos]
60-
61- #now I glue together the results
62- my_means=zeros((n2,4))
63- my_means[:,0]=my_mean
64- my_means[:,1]=mean_cross
65- my_means[:,2]=mean_theta
66- my_means[:,3]=my_v_rms
67- name_bis='means_v_z%03d'%n_snap_fin
68- pylab.save(name_bis,my_means)
69-
38+ if (readmean != 1):
39+ #I simply take the temporal mean and save the array along
40+ # the whole tube. It will be used afterwards to
41+ #evaluate the rms
42+ q3arr=q3arr/float(n_snap_fin-n_snap_ini+1.) #I first take a temporal mean
43+ name_bis='means_v_z_3D%03d'%n_snap_fin
44+ pylab.save(name_bis,q3arr)
45+ # Now I conveniently change the shape of the array
46+ q3arr=reshape(q3arr,[n1,n2,n3])
47+ #my_mean=zeros(n2)
48+ #Now I take the mean along theta and z to get v_z(r)
49+ my_mean=q3arr.mean(axis=0).mean(axis=1)
50+ #now I work out the average v_z(r) for a specific
51+ #z (average on a tube cross section)
52+ #mean_cross=zeros(n2)
53+ #similar procedure as before, but along only an axis only
54+ mean_cross=q3arr[:,:,z_pos].mean(axis=0)
55+ #finally I work out the temporal mean for a specific theta and x
56+ mean_theta=q3arr[theta_pos,:,z_pos]
57+ #now I glue together the results
58+ my_means=zeros((n2,3))
59+ my_means[:,0]=my_mean
60+ my_means[:,1]=mean_cross
61+ my_means[:,2]=mean_theta
62+ #my_means[:,3]=my_v_rms
63+ name_bis='means_v_z%03d'%n_snap_fin
64+ pylab.save(name_bis,my_means)
65+ elif (readmean ==1):
66+ v_rms=v_rms/float(n_snap_fin-n_snap_ini+1.) # temporal mean of v_rms
67+ v_rms=reshape(v_rms,[n1,n2,n3])
68+ #my_v_rms=zeros(n2)
69+ #The following lines are a much faster and cleaner way to deal
70+ # with the means along theta and r
71+ my_v_rms=v_rms.mean(axis=0).mean(axis=1)
72+ my_v_rms=sqrt(my_v_rms)
73+ name_bis='v_z_rms%03d'%n_snap_fin
74+ #my_means=zeros(n2)
75+ pylab.save(name_bis,my_v_rms)
76+ my_means=my_v_rms
7077 return my_means
7178
7279
7380
74-n1=65 # theta grid
75-n2=65 # r grid
76-n3=65 # z grid
81+n1=129 # theta grid
82+n2=88 # r grid
83+n3=129 # z grid
7784
7885 z_pos=25 # I fix a certain position along z
7986 # I am not really using this now, but it could come handy later on.
@@ -83,7 +90,8 @@
8390 n_snap_fin = int(raw_input("Enter the value of the final snapshot to read "))
8491 #n_snap_ini=15
8592 #n_snap_fin=20 # number of snapshots
86-name='vz%05d'
93+name='../vz%05d'
94+#print 'name is ', name
8795 readmean = int(raw_input("Do you want to read (1) qmean for the v_rms? "))
8896
8997
@@ -97,7 +105,7 @@
97105 elif (icalc == 0):
98106 print 'here I am'
99107 #l=n_snap_fin
100- fname='means_v_z%03d'%n_snap_fin
108+ fname='../means_v_z%03d'%n_snap_fin
101109 print 'fname is', fname
102110 my_arr=pylab.load(fname)
103111
@@ -109,7 +117,7 @@
109117
110118
111119
112-data=pylab.load("rg2.out")
120+data=pylab.load("../rg2.out")
113121 #data=pylab.load("radstr.out")
114122
115123 print 'data[:,0] is', data[:,0]
@@ -126,19 +134,21 @@
126134 vel_prof=(1-my_arr)**(1./6.)
127135 return vel_prof
128136
129-
130-name_bis='Average_v_z(r)_on_snapshot%03d'%n_snap_fin
137+if (readmean != 1): # in this case I plot some statistics about the average velocity I
138+ # have just worked out
131139
132-vel_emp=one_sixth(data[:,0])
133-pylab.plot(data[:,0],my_arr[:,0],data[:,0],my_arr[:,1],data[:,0],my_arr[:,2]\
134-,data[:,0],vel_emp*max(my_arr[:,0]))
135-pylab.legend(('average on the whole tube','average on cross section','specific position'\
136-,'empirical correlation'))
137-pylab.xlabel('Radial Coordinate')
138-pylab.ylabel('Physical Coordinate')
139-pylab.title('Radial Grid')
140-pylab.grid(True)
141-pylab.savefig(name_bis)
140+ name_bis='Average_v_z(r)_on_snapshot%03d'%n_snap_fin
141+
142+ vel_emp=one_sixth(data[:,0])
143+ pylab.plot(data[:,0],my_arr[:,0],data[:,0],my_arr[:,1],data[:,0],my_arr[:,2]\
144+ ,data[:,0],vel_emp*max(my_arr[:,0]))
145+ pylab.legend(('average on the whole tube','average on cross section',\
146+ 'specific position','empirical correlation'))
147+ pylab.xlabel('Radial Coordinate')
148+ pylab.ylabel('Physical Coordinate')
149+ pylab.title('Radial Grid')
150+ pylab.grid(True)
151+ pylab.savefig(name_bis)
142152
143153 # now I compare everything with the result I got with Comsol
144154
@@ -147,36 +157,38 @@
147157 #comsol[:,0]=comsol[:,0]/max(comsol[:,0])
148158 #comsol[:,1]=comsol[:,1]/max(comsol[:,1])*max(my_arr[:,0])
149159
150-name_bis='Average_v_z(r)_on_snapshot%03d_bis'%n_snap_fin
160+ name_bis='Average_v_z(r)_on_snapshot%03d_bis'%n_snap_fin
151161
152-pylab.plot(data[:,0],my_arr[:,0],\
153-data[:,0],vel_emp*max(my_arr[:,0]))
154-pylab.legend(('average on the whole tube',\
155-'empirical correlation'))
156-pylab.xlabel('Radial Coordinate')
157-pylab.ylabel('Physical Coordinate')
158-pylab.title('Radial Grid')
159-pylab.grid(True)
160-pylab.savefig(name_bis)
161-
162+ pylab.plot(data[:,0],my_arr[:,0],\
163+ data[:,0],vel_emp*max(my_arr[:,0]))
164+ pylab.legend(('average on the whole tube',\
165+ 'empirical correlation'))
166+ pylab.xlabel('Radial Coordinate')
167+ pylab.ylabel('Physical Coordinate')
168+ pylab.title('Radial Grid')
169+ pylab.grid(True)
170+ pylab.savefig(name_bis)
162171
163172
164-name_bis='v_z(r)_rms%03d'%n_snap_fin
173+if (readmean ==1): # in this case I am ready with the rms plots
174+
165175
166-pylab.plot(data[:,0],my_arr[:,3])
167-#pylab.legend(('average on the whole tube'))
168-pylab.xlabel('Radial Coordinate')
169-pylab.ylabel('Physical Coordinate')
170-pylab.title('Radial Grid')
171-pylab.grid(True)
172-pylab.savefig(name_bis)
176+ name_bis='v_z(r)_rms%03d'%n_snap_fin
173177
174-name_bis='U_z_rms%03d'%n_snap_fin
178+ pylab.plot(data[:,0],my_arr)
179+ #pylab.legend(('average on the whole tube'))
180+ pylab.xlabel('Radial Coordinate')
181+ pylab.ylabel('Physical Coordinate')
182+ pylab.title('Radial Grid')
183+ pylab.grid(True)
184+ pylab.savefig(name_bis)
175185
176-results=zeros((n2,2))
177-results[:,0]=data[:,0]
178-results[:,1]=my_arr[:,3]
179-pylab.save(name_bis,results)
186+ name_bis='U_z_rms%03d'%n_snap_fin
187+
188+ results=zeros((n2,2))
189+ results[:,0]=data[:,0]
190+ results[:,1]=my_arr
191+ pylab.save(name_bis,results)
180192
181193 #name_bis='Radial_velocity_fluctuations%03d'%n_snap_fin
182194
@@ -191,24 +203,23 @@
191203
192204
193205 #Now it is time to calculate the physical axial velocity in the tube
194-
195-U_phys=my_arr[:,0]*U_b*2.
206+if (readmean != 1):
207+ U_phys=my_arr[:,0]*U_b*2.
196208
197209
198-#print 'U_phys is',U_phys
199-
200-#r_coord=r_ini
201-r_phys=r_ini*D/2.
210+ #print 'U_phys is',U_phys
202211
203-name_bis='physical_axial_velocity%03d'%n_snap_fin
204-pylab.plot(r_phys,U_phys)
205-#pylab.legend(('average on the whole tube','comsol',\
206-#'empirical correlation'))
207-pylab.xlabel('Radial Coordinate')
208-pylab.ylabel('Physical Coordinate')
209-pylab.title('Axial Velocity vs r')
210-pylab.grid(True)
211-pylab.savefig(name_bis)
212+ #r_coord=r_ini
213+ r_phys=r_ini*D/2.
214+ name_bis='physical_axial_velocity%03d'%n_snap_fin
215+ pylab.plot(r_phys,U_phys)
216+ #pylab.legend(('average on the whole tube','comsol',\
217+ #'empirical correlation'))
218+ pylab.xlabel('Radial Coordinate')
219+ pylab.ylabel('Physical Coordinate')
220+ pylab.title('Axial Velocity vs r')
221+ pylab.grid(True)
222+ pylab.savefig(name_bis)
212223
213224
214225 # Now I work out different units
@@ -234,50 +245,54 @@
234245 print 'delta_nu is', delta_nu
235246
236247 #Now the same plot as before in wall units (for r and v_z)
237-r_plus=r_phys/delta_nu
238-U_plus=U_phys/u_tau
239-
240-name_bis='axial_velocity_wall_units%03d'%n_snap_fin
241-pylab.plot(r_plus,U_plus)
242-#pylab.legend(('average on the whole tube','comsol',\
243-#'empirical correlation'))
244-pylab.xlabel('r+')
245-pylab.ylabel('u+')
246-pylab.title('Axial Velocity y+ vs r+')
247-pylab.grid(True)
248-pylab.savefig(name_bis)
249-
250-r_red=r_plus[2:(len(r_ini)-1)]
248+if (readmean != 1):
249+
250+ r_plus=r_phys/delta_nu
251+ U_plus=U_phys/u_tau
251252
252-name_bis='axial_velocity_wall_units_distance_from_wall%03d'%n_snap_fin
253-pylab.plot(max(r_plus)-r_plus,U_plus/max(U_plus),max(r_plus)-r_plus,max(r_plus)-r_plus,\
254-max(r_plus)-r_red,\
255-(5.2+(1./0.41)*log(max(r_plus)-r_red))/max((5.2+(1./0.41)*log(max(r_plus)-r_red))))
256-pylab.axis([0.,max(r_plus),0.,1.])
257-pylab.legend(('numerics','linear behavior','log-law'))
258-pylab.xlabel('r+')
259-pylab.ylabel('u+')
260-pylab.title('Axial Velocity y+ vs r+')
261-pylab.grid(True)
262-pylab.savefig(name_bis)
253+ name_bis='axial_velocity_wall_units%03d'%n_snap_fin
254+ pylab.plot(r_plus,U_plus)
255+ #pylab.legend(('average on the whole tube','comsol',\
256+ #'empirical correlation'))
257+ pylab.xlabel('r+')
258+ pylab.ylabel('u+')
259+ pylab.title('Axial Velocity y+ vs r+')
260+ pylab.grid(True)
261+ pylab.savefig(name_bis)
263262
264-name_bis='axial_velocity_wall_units_distance_from_wall_unscaled%03d'%n_snap_fin
265-pylab.plot(max(r_plus)-r_plus,U_plus,max(r_plus)-r_plus,max(r_plus)-r_plus,\
266-max(r_plus)-r_red,\
267-(5.2+(1./0.41)*log(max(r_plus)-r_red)))
268-pylab.axis([0.,max(r_plus),0.,max(max(U_plus),\
269-max((5.2+(1./0.41)*log(max(r_plus)-r_red))))])
270-pylab.legend(('numerics','linear behavior','log-law'))
271-pylab.xlabel('r+')
272-pylab.ylabel('u+')
273-pylab.title('Axial Velocity y+ vs r+')
274-pylab.grid(True)
275-pylab.savefig(name_bis)
263+ r_red=r_plus[2:(len(r_ini)-1)]
276264
277-name_bis='r_and_Uz%03d'%n_snap_fin
278-#results=zeros((len(U_plus),2))
279-results[:,0]=data[:,0]
280-results[:,1]=my_arr[:,0]
281-pylab.save(name_bis,results)
265+ name_bis='axial_velocity_wall_units_distance_from_wall%03d'%n_snap_fin
266+ pylab.plot(max(r_plus)-r_plus,U_plus/max(U_plus),\
267+ max(r_plus)-r_plus,max(r_plus)-r_plus,\
268+ max(r_plus)-r_red,\
269+ (5.2+(1./0.41)*log(max(r_plus)-r_red))/max((5.2+(1./0.41)*\
270+ log(max(r_plus)-r_red))))
271+ pylab.axis([0.,max(r_plus),0.,1.])
272+ pylab.legend(('numerics','linear behavior','log-law'))
273+ pylab.xlabel('r+')
274+ pylab.ylabel('u+')
275+ pylab.title('Axial Velocity y+ vs r+')
276+ pylab.grid(True)
277+ pylab.savefig(name_bis)
278+
279+ name_bis='axial_velocity_wall_units_distance_from_wall_unscaled%03d'%n_snap_fin
280+ pylab.plot(max(r_plus)-r_plus,U_plus,max(r_plus)-r_plus,max(r_plus)-r_plus,\
281+ max(r_plus)-r_red,\
282+ (5.2+(1./0.41)*log(max(r_plus)-r_red)))
283+ pylab.axis([0.,max(r_plus),0.,max(max(U_plus),\
284+ max((5.2+(1./0.41)*log(max(r_plus)-r_red))))])
285+ pylab.legend(('numerics','linear behavior','log-law'))
286+ pylab.xlabel('r+')
287+ pylab.ylabel('u+')
288+ pylab.title('Axial Velocity y+ vs r+')
289+ pylab.grid(True)
290+ pylab.savefig(name_bis)
291+
292+ name_bis='r_and_Uz%03d'%n_snap_fin
293+ results=zeros((len(U_plus),2))
294+ results[:,0]=data[:,0]
295+ results[:,1]=my_arr[:,0]
296+ pylab.save(name_bis,results)
282297
283298 print 'So far so good'
\ No newline at end of file