Rev. | 7f725d5e210b09ea77030af9488c489dcba1c5e2 |
---|---|
크기 | 7,200 bytes |
Time | 2014-11-03 19:54:35 |
Author | Lorenzo Isella |
Log Message | Minor modifications: I just changed the name of a module I need to import. |
#! /usr/bin/env python
# from enthought.mayavi import mlab
from mayavi import mlab
import scipy as s
import numpy as n
import scipy.spatial as sp
import sys
sys.setrecursionlimit(100000)
def accept_reject_monomer_pos_recursive(cluster_shifted, dist,epsi):
xyz=random_on_sphere(dist)
dist_list=s.zeros(0)
for i in s.arange(s.shape(cluster_shifted)[0]):
my_dist= sp.distance.euclidean_distances(xyz,cluster_shifted[i,:])
# if (my_dist<=(2.+epsi)):
#i.e. excessive compenetration
if ((my_dist)<(2.-epsi)): \
return accept_reject_monomer_pos(cluster_shifted, dist,epsi)
dist_list=s.hstack((dist_list,my_dist))
sel=s.where(dist_list<=(2.+epsi))[0]
if (len(sel)==0): return accept_reject_monomer_pos(cluster_shifted,\
dist,epsi) #i.e. there are no contact points
cluster_shifted=s.vstack((cluster_shifted, xyz))
return cluster_shifted
def accept_reject_monomer_pos(cluster_shifted, dist,epsi):
while(True):
xyz=random_on_sphere(dist)
# dist_list = sp.distance.cdist(cluster_shifted,\
# xyz.reshape((-1,3)))
dist_list = euclidean_distances(cluster_shifted,\
xyz.reshape((-1,3)))
# print "dist_list is, ", dist_list
# if (not (dist_list < (2.-epsi)).any()) and (dist_list<=(2.+epsi)).any():
# cluster_shifted=s.vstack((cluster_shifted, xyz))
if (not (dist_list < 2.).any()) and (dist_list<=(2.+epsi)).any():
cluster_shifted=s.vstack((cluster_shifted, xyz))
return cluster_shifted
def random_on_sphere_recursive(radius):
x12=s.random.uniform(-1.,1.,2)
if (s.sum(x12**2.)>=1.):return random_on_sphere(radius)
# print "x12 is, ", x12
# print "s.sum(x12**2.) is, ", s.sum(x12**2.)
rvec=s.arange(3)*1.
rvec[0]=radius*2.*x12[0]*s.sqrt(1.-x12[0]**2.-x12[1]**2.)
rvec[1]=radius*2.*x12[1]*s.sqrt(1.-x12[0]**2.-x12[1]**2.)
rvec[2]=radius*(1.-2.*(x12[0]**2.+x12[1]**2.))
# print "rvec is, ", rvec
return rvec
def random_on_sphere(radius):
x12=s.random.uniform(-1.,1.,2)
while (s.sum(x12**2.)>=1.):
x12=s.random.uniform(-1.,1.,2)
rvec=s.arange(3)*1.
rvec[0]=radius*2.*x12[0]*s.sqrt(1.-x12[0]**2.-x12[1]**2.)
rvec[1]=radius*2.*x12[1]*s.sqrt(1.-x12[0]**2.-x12[1]**2.)
rvec[2]=radius*(1.-2.*(x12[0]**2.+x12[1]**2.))
return rvec
def new_dist_sq(N,df,kf):
dsq=(N**2.)/(N-1.)*(N/kf)**(2./df)-N/(N-1.)-N*((N-1.)/kf)**(2./df)
return dsq
def new_dist(N,df,kf):
dsq=(N**2.)/(N-1.)*(N/kf)**(2./df)-N/(N-1.)-N*((N-1.)/kf)**(2./df)
dsq=s.sqrt(dsq)
return dsq
def find_CM(cluster):
CM=s.mean(cluster, axis=0)
return CM
def relocate_cluster(cluster):
cluster_shift=find_CM(cluster)
cluster[:,0]=cluster[:,0]-cluster_shift[0]
cluster[:,1]=cluster[:,1]-cluster_shift[1]
cluster[:,2]=cluster[:,2]-cluster_shift[2]
return cluster
def euclidean_distances(X, Y, Y_norm_squared=None, squared=False):
"""
Considering the rows of X (and Y=X) as vectors, compute the
distance matrix between each pair of vectors.
Parameters
----------
X: array of shape (n_samples_1, n_features)
Y: array of shape (n_samples_2, n_features)
Y_norm_squared: array [n_samples_2], optional
pre-computed (Y**2).sum(axis=1)
squared: boolean, optional
This routine will return squared Euclidean distances instead.
Returns
-------
distances: array of shape (n_samples_1, n_samples_2)
Examples
--------
>>> from scikits.learn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distrance between rows of X
>>> euclidean_distances(X, X)
array([[ 0., 1.],
[ 1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[ 1. ],
[ 1.41421356]])
"""
# should not need X_norm_squared because if you could precompute that as
# well as Y, then you should just pre-compute the output and not even
# call this function.
if X is Y:
X = Y = n.asanyarray(X)
else:
X = n.asanyarray(X)
Y = n.asanyarray(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError("Incompatible dimension for X and Y matrices")
XX = n.sum(X * X, axis=1)[:, n.newaxis]
if X is Y: # shortcut in the common case euclidean_distances(X, X)
YY = XX.T
elif Y_norm_squared is None:
YY = Y.copy()
YY **= 2
YY = n.sum(YY, axis=1)[n.newaxis, :]
else:
YY = n.asanyarray(Y_norm_squared)
if YY.shape != (Y.shape[0],):
raise ValueError("Incompatible dimension for Y and Y_norm_squared")
YY = YY[n.newaxis, :]
# TODO:
# a faster cython implementation would do the dot product first,
# and then add XX, add YY, and do the clipping of negative values in
# a single pass over the output matrix.
distances = XX + YY # Using broadcasting
distances -= 2 * n.dot(X, Y.T)
distances = n.maximum(distances, 0)
if squared:
return distances
else:
return n.sqrt(distances)
euclidian_distances = euclidean_distances # both spelling for backward compat
# NB: the cluster initially has N-1=2 monomers. N=3 is the number of monomers
# after adding a new monomer.
# N=3.
# a=1. and removed from the formula
kf=1.3
df= 1.78 # 1.8
epsi=0.01
# N_iter=80
N_clust=64
# d_square= new_dist_sq(N,df,kf)
# print "d_square is, ", d_square
# print "and the distance is, ", s.sqrt(d_square)
# r=random_on_sphere(3.)
# print "r is, ", r
# r_mod=s.sqrt(s.sum(r**2.))
# print "r_mod is, ", r_mod
ini_cluster=s.arange(9).reshape((3,3))*1.
ini_cluster[0,0]=0.
ini_cluster[0,1]=0.
ini_cluster[0,2]=0.
ini_cluster[1,0]=-2.
ini_cluster[1,1]=0.
ini_cluster[1,2]=0.
ini_cluster[2,0]=s.sqrt(2.)
ini_cluster[2,1]=0.
ini_cluster[2,2]=s.sqrt(2.)
ini_cluster=relocate_cluster(ini_cluster)
print "ini_cluster is, ", ini_cluster
# NB: in ini_cluster I am using the coordinates [x,y,z] of the monomer
# centre in each row. It is a dimer whose CM is at [0,0,0]
for iter_clust in s.arange(N_clust):
# if (s.remainder(iter_clust,50)==0):
print "iter_clust is, ", iter_clust
N=4
N_iter=s.random.randint(2,5,1)[0]
# N_iter=31
cluster=s.copy(ini_cluster)
for i in s.arange(N_iter):
cluster=relocate_cluster(cluster)
d_calc=new_dist(N,df,kf)
# cluster_new=accept_reject_monomer_pos(cluster, d_calc,epsi)
cluster=accept_reject_monomer_pos(cluster, d_calc,epsi)
N=N+1
# cluster=s.copy(cluster_new)
prefix="aggregate_number_%01d"%(iter_clust+1)
filename="_.dat"
filename=prefix+filename
n.savetxt(filename, cluster)
# x=cluster[:,0]
# y=cluster[:,1]
# z=cluster[:,2]
# mlab.clf()
# pts = mlab.points3d(x, y, z, scale_mode='none', resolution=20,\
# color=(0,0,1),scale_factor=2.)
# #mlab.axes(pts)
# mlab.show()
print "So far so good"