Download List

프로젝트 설명

SHOGUN is a machine learning toolbox whose focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, all making use of the same underlying, efficient kernel implementations. Apart from SVMs and regression, SHOGUN also features a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons, and algorithms to train hidden Markov models. SHOGUN can be used from within C++, Matlab, R, Octave, and Python.

System Requirements

System requirement is not defined
Information regarding Project Releases and Project Resources. Note that the information here is a quote from Freecode.com page, and the downloads themselves may not be hosted on OSDN.

2010-12-07 23:55 Back to release list
0.10.0

이것은 내부뿐만 아니라 사용자가 눈에 띄는 변화가 많이있는 새로운 주요 릴리스입니다. 우선, 지금하고 (응용 프로그램 폴더에서) 응용 프로그램의 숫자를 포함하는 모든 데이터 집합 이제 별도의 압축에 포함됩니다. 사용자의, 가장 흥미롭고 중요한 특징은 직렬화 지원입니다. 하나는 현재 디스크에있는 쇼군 개체를 덤프하고 나중에 다시 로드할 수 있습니다. 지원되는 직렬화 형식이 포함됩니다. hdf5, 아스키,. json, XML 포맷, 그리고 파이썬 피클 버전 1과 2.
This is a major new release with lots of internal but also user visible changes. First of all, it now includes a number of applications (in the applications folder) and all the data sets are now contained in a separate tarball. For the user, the most interesting and important feature is serialization support. One can now dump any shogun object to disk and load it later on. Supported serialization formats include .hdf5, ascii, .json, XML formats, and Python pickle version 1 and 2.

Project Resources