
1

Task Oriented Management Obviates Your Onus on Linux.

Toshiharu HARADA, Takashi HORIE and Kazuo TANAKA,

Research and Development Headquarters, NTT DATA CORPORATION

e-mail: {haradats, horietk, tanakakza}@nttdata.co.jp

Abstract

The security enhanced OSes are getting to be introduced as a method to improve

security of computer systems. Many of security enhanced OSes performs access controls

based on roles assigned to users and labels assigned to resources, but this approach

tends to require very complicated policy files and is not always manageable for everyone.

This paper describes the features and implementations of TOMOYO Linux, a security

enhanced Linux kernel with automatic policy generation technology. TOMOYO Linux

doesn't require labeling, and performs access control on processes. The approach of

TOMOYO Linux makes it possible to perform simple but effective Mandatory Access

Control.

1. Introduction

The access controls on files and directories in

normal Linux/UNIX are performed based on access

control information called "security bits" that are kept

within the filesystem, and the owner of files and

directories can change the access control information

freely. Also, if the process that requested accesses is

running with administrator's privileges, the access

requests are always granted regardless of the access

control information. Therefore, it is inevitable that the

system gets completely damaged if the control of any

processes that are running with administrator's

privileges is wrested by (for example) attacking buffer

overflow. This is known as security problem [1, 2]. To

solve this security problem, MAC (Mandatory Access

Control) was invented and open sourced

implementations of MAC such as SELinux [3, 4] are

appearing. Also, LSM (Linux Security Modules) [5],

the framework to make security expansion easier, was

incorporated into Linux 2.6 kernels and became

available.

The most of MAC implementations on Linux

performs access control by "hooking system calls

in the kernel space" and "checking the validity by

comparing with policies supplied by

administrators" and "processing only if the

request is valid". In Linux, all functions are

processed via system calls provided by the kernel,

the method of hooking system calls can improve

Linux's security for sure. But that method doesn't

solve all problems. The introduction of MAC

entails policy definition and management

depending on the granularity of individual MAC

implementations. Also, in SELinux, the identifier

called "label" has to be assigned ALWAYS

APPRICIATELY to resources such as files and

directories. As a result, though the existent MAC

implementations on Linux fill the requirement of

functionality, there still remains the large barrier

when considering actual introduction and

operation. The authors of this paper (hereafter,

we) have developed our original security

enhanced Linux "TOMOYO Linux" to solve this

barrier.

2. TOMOYO Linux

TOMOYO Linux is the acronym for "Task

Oriented Management Obviates Your Onus on

Linux" and is a security enhanced Linux kernel

with the following features.

・ Can generate policy automatically

・ MAC based on the "struct task_struct"

・ No labeling needed

・ Possible to combine with SAKURA Linux

・ Can discard unnecessary privileges

voluntarily

・ Beginners-friendly policy syntaxes

・ Has CUI based policy editor

We explain each feature below.

2

2.1. Automatic policy generation technology

The MAC accepts or rejects strictly and

precisely the access request based on policies

predefined and supplied by administrators.

Therefore, the administrators have to figure out

all resources that might be accessed and grant

permissions to them, and this makes actual

operation more difficult. It is easy to operate if all

files and directories that (for example) Apache

(the HTTP server) accesses are listed in the

Apache's configuration files, but it is impossible

to do so. There are dynamically linked library

files (that can be found by using "ldd" command),

modules loaded on demand (that cannot be found

by using "ldd" command), files accessed via

multiple names due to hard links and symbolic

links, and (for example) CGI programs and perl

and ruby. The administrator has to figure out all

files and directories and their access modes. It is

easily understand that this is almost impossible.

But the administrator has to do so to define policy

needed for MAC.

We focused attention on this problem, and have

developed "Access policy generation system based

on process execution history"[7]. This system

captures and records access requests in the

kernel space, and can generate about 90% of

policies needed for MAC by just performing a

series of operations the administrator wishes to

allow. TOMOYO Linux implemented MAC using

this technology. TOMOYO Linux can provide

policy to administrators by booting with "accept

mode" and performing a series of operations the

administrator wishes to allow. The administrator

can define just enough policy by editing and

authorizing the policy provided by "accept mode".

The biggest feature of TOMOYO Linux is that

TOMOYO Linux has both "accept mode" that

assists generating policy for MAC and "enforce

mode" that performs MAC based on policy.

Also the unique domain division rule allows

administrators grant permissions to minimal

resources to domains that are running the same

program depending on their contexts.

2.2. MAC based on the "struct task_struct"

In Linux, the "struct task_struct" is designed

and implemented to be inherited from parent

process to child processes using fork() and

execve() system calls. We focused on this feature

and implemented original MAC without using

LSM. The patch of our MAC implementation for

standard kernels is very compact, and allows

access controls based on process execution

history.

2.3. No labeling needed for files and directories

In many MAC implementations including

SELinux, the "label" is assigned to files and

directories first and then policies are defined

using "label". For example, to define policy that

controls access to /etc/passwd, the administrator

has to assign a label to both /etc/passwd and

programs that access to /etc/passwd (such as

/usr/bin/passwd).

There are two problems. One is that it is

laborious for administrators to assign appropriate

labels to all resources. The other one is that it

may happen that the binding of pathnames and

labels accidentally get corrupted and as a result

the appropriate access controls cannot be

performed. To avoid these problems, TOMOYO

Linux uses "canonicalized pathnames" instead of

"labels", and allows administrators intuitive

policy definition.

2.4. Possible to combine with SAKURA Linux

It becomes more secure by combining with

(code name) SAKURA Linux [6] we have

explained in Linux Conference 2003 to ensure

physically programs and files are not being

tampered with. (The logical protection (i.e.

mounting read-only) is not always tamper-proof,

because the content of read-only mounted

medium will be destroyed by directly writing to

device files that corresponds to the medium.

Therefore, physical protection is important.)

2.5. Possible to discard voluntarily unnecessary

privileges

The security enhanced Linux implementations

including SELinux use existent programs without

modification, and restricts their behavior using

policies. TOMOYO Linux needn't to modify

existent programs, but TOMOYO Linux provides

3

existent programs a mechanism to discard

unnecessary privileges voluntarily. It is possible

to (for example) "discard a privilege to execute

new program (i.e. calling execve())" or "discard a

privilege to reacquire root privileges (i.e.

becoming euid = 0)" by just inserting one line to

existent programs. For example, if /usr/sbin/httpd

needn't to execute new programs (for example,

/bin/sh), by inserting a line that discards the

privilege to call execve(), the control of

/usr/sbin/httpd won't be wrested by execution of

exploit code. There is no need for policy

management for this mechanism. It is possible to

apply this mechanism to restrict more tightly

that are already restricted by MAC's policy.

3. Considerations on "domain"

3.1. The "domain" and "domain transition diagram"

To perform MAC, the domain is assigned to

each process, and restricts accessible resources

for each domain. The state of a process changes

when (for example) a new program is executed,

and the process transits to different domain if

conditions defined in the policy are met. By

appropriately restricting domains that are

allowed to transit to, the system's appropriate

behaviors and securities are ensured.

There is a flowchart called "domain transition

diagram" to figure out the domain transitions

visually. Whether the domain transition diagram

is accessible for the administrator directly

mirrors whether the administrator can figure out

domain transitions correctly and define

appropriate policy.

The three types of domain transition diagram

are shown below.

0

23

4

1

0

23

4

1

Fig. 1 No restrictions for domain transition

0

23

4

1

0

23

4

1

Fig. 2 Considering only the current domain for

domain transition

0

0 ⇒ 1 ⇒ 2

0 ⇒ 1 ⇒ 2 ⇒ 3

0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 4

0⇒1

0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 1

Different states
0

0 ⇒ 1 ⇒ 2

0 ⇒ 1 ⇒ 2 ⇒ 3

0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 4

0⇒1

0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 1

Different states

Fig. 3 Considering the whole past domains for

domain transition

It makes possible to restrict the domains that

can transit to by introducing MAC. In other

words, before introducing MAC, a process can

transit to arbitrary states as shown in Fig. 1.

After introducing MAC, a process cannot transit

to arbitrary states as shown in Fig. 2 and Fig. 3.

Now, let's consider which of Fig. 2 and Fig. 3 is

easier to understand.

The Fig. 2 can reduce the total number of

domains, but may yield infinite domain transition

loop. If the total number of domains is small, the

Fig. 2 is convenient. But if the total number of

domains becomes larger, you can't trace the all of

domain transitions. You can't even draw the

domain transition diagram that precisely mirrors

the system's behavior. Also, Fig. 2 makes more

difficult to figure out the range of domains that

are affected by the insertion or deletion of

domains. You have to verify that the insertion or

deletion of domains doesn't break the existent

4

paths needed for the system's appropriate

behavior.

The total number of domains in Fig. 3 becomes

largest since all states are differentiated. But you

can trace the all of domain transitions regardless

of the total number of domains because the

domain transitions are tree structured. You can

always draw the domain transition diagram that

precisely mirrors the system's behavior. Also, Fig.

3 makes obvious to figure out the range of

domains that are affected by the insertion or

deletion of domains. You can easily verify the

range. The Fig. 3 entails the cost of defining all

domains. But the cost is dramatically reduced

because the domains are assigned mechanically

by adopting "Access policy generation system

based on process execution history"[7] approach.

We think the cost of defining all domains

mechanically is much smaller than the cost of

verifying all domains whenever a domain

transition path is inserted or deleted manually.

3.2. The "domain" in SELinux

The SELinux adopts the domain transition of

Fig. 2. Therefore, it makes difficult to figure out

visually if the administrator attempts to divide

existent domains into smaller domains to perform

accesses controls more tightly. Also, since

SELinux limits the letters that can be used for

the name of domains and labels (for example, "/"

is not allowed), the administrator can't use

pathnames for the name of domains and labels,

leading to non-intuitive bindings of "the name of

domain and the name of individual programs"

and "the name of label and the name of individual

files".

3.3. The "domain" in SubDomain

The SubDomain[8] is a Linux that supports

MAC developed by Immunix. The SubDomain can

perform MAC mainly on files and directories and

the execution of programs. The SubDomain

adopts the domain transition of Fig. 3. Though it

is impossible to perform MAC as fine-grained as

SELinux, it is accessible for beginners because

the structure is simple and the policy is defined

using pathnames (unlike SELinux that requires

labels). Our TOMOYO Linux supports some

functions similar to SubDomain.

3.4. The "domain" in TOMOYO Linux

The TOMOYO Linux adopts the domain

transition of Fig. 3. Also, TOMOYO Linux uses

the pathnames of programs for the name of

domains. Therefore, it makes easy to figure out

and edit visually. Unlike Fig. 2, Fig. 3 can grant

permissions to minimal resources for the same

program considering the process's execution

history.

4. Implementations of MAC

Our SAKURA Linux [6] can prevent files from

being tampered with even if the system is

wrested by the cracker. Though the cracker can't

tamper with files, the cracker can execute

arbitrary programs and read arbitrary files

because the access control itself is not enforced,

and this is a security problem. But by combining

this system with TOMOYO Linux, it makes

possible to perform the access control while

preventing tampering.

This chapter describes the abstract of MAC

implementation in TOMOYO Linux.

4.1. Access control based on canonicalized

pathnames

Many of MAC implementations perform access

controls based on labels. These labels are, aside

from existent pathnames, newly assigned

identifiers used only for performing MAC. But, by

right, there is no need to assign labels for files

and directories, for the canonicalized pathnames

are unique on that system and can be used as

identifiers.

By using pathnames for labels, it makes

possible to figure out viscerally the binding of the

subjects of accesses (i.e. processes) and the objects

of accesses (i.e. resources). Also, the

implementation becomes simpler because the

system can always assume the correctness of

labeling. This will become a great advantage in

actual operations. We will briefly describe the

procedure to derive the canonicalized pathnames

below.

4.1.1. The way of handling pathnames from the

5

user's view

The userland programs handle pathname as a

NULL terminated string. It is essential for users

that users can handle pathnames using

understandable string.

4.1.2. The way of handling pathnames from the

Linux kernel's view

The kernel handles pathname using a structure

named "struct nameidata", not a NULL

terminated string. The kernel can't handle

pathnames in the form of string. The procedure

that converts the NULL terminated string into

the "struct nameidata" is link_path_walk()

defined in fs/namei.c. The "struct nameidata"

contains the "struct dentry" and the "struct

vfsmnt". The former holds the information of the

file in the filesystem, and the latter holds the

information of the mountpoint.

4.1.3. The way to convert into canonicalized

pathnames

The "struct nameidata" is the form of

representing pathnames in the kernel. The

procedure that converts the "struct nameidata"

into the NULL terminated string is __d_path()

defined in fs/dcache.c. By using __d_path(), we

can obtain the canonicalized pathnames (that has

no symbolic links) that has already converted into

the "struct nameidata".

Since the __d_path() calculates up to only the

process's "/" directory, we can't obtain the

canonicalized pathnames if the process has

already chroot'ed to somewhere. Therefore, we

created a new function that ignores the process's

"/" directory to obtain the canonicalized

pathnames based on __d_path().

4.2. Domain transitions

In TOMOYO Linux, every process always

belongs to a domain, and the access permissions

for files and directories are granted to each

domain. But, the definition of domain in

TOMOYO Linux differs from the definition in

SELinux.

The initial domain is the kernel, and is

represented as "<kernel>". Since /sbin/init is

invoked by the kernel, the domain for /bin/init is

represented as "<kernel> /sbin/init". The domain

for /etc/rc.d/rc invoked by /sbin/init is represented

as "<kernel> /sbin/init /etc/rc.d/rc".

Since the process invocation history that tells

how the current process is invoked is maintained,

the same program belongs to different domains if

their parent domains differ. This allows

administrators grant permissions to minimal

resources for the same program depending on

their contexts. Also, it is easy to edit the domain

transition because the domain transition is tree

structured.

In the kernel space, there is a domain index

table that converts the domain names into the

domain numbers. From the point of process's view,

the domain transition means the change of

domain number.

4.3. Access controls on execution of programs

When invoking a program, the execution

permission is checked.

Filename Function Location to check

fs/exec.c do_execve() open_exec()

The do_execve() function performs the following

steps.

(1) Get the canonicalized pathname of the

requested program.

(2) If the kernel is running with accept mode,

grant the execute permission of the

pathname obtained in step (1) to the

domain the subject process belongs to. If

the kernel is running with enforce mode,

check whether the execute permission of

the pathname obtained in step (1) is

granted to the domain the subject process

belongs to, and return error if not granted.

(3) Concatenate the name of the subject

process's domain and the canonicalized

pathname obtained in step (1), and hold

the result as the name of the domain that

subject process will belong to.

(4) If the kernel is running with accept mode,

register the name of domain obtained in

step (3) into the domain index table. If the

kernel is running with enforce mode,

check whether the name of domain

obtained in step (3) is registered in the

domain index table, and return error if not

6

registered.

(5) Continue the standard procedure of

do_execve(), and transit to the domain

obtained in step (3) if this procedure

succeeded. In the standard procedure of

do_execve(), we don't give the

canonicalized pathname obtained in step

(1), for there are programs that behave

differently depending on their invocation

name. For example, /sbin/pidof is a

symbolic link to /sbin/killall5, and

/sbin/pidof and /sbin/killall5 behave

differently depending on their invocation

name.

4.4. Access controls on read accesses

When opening files for reading or loading

shared libraries, the read permission is checked.

Filename Function Location to check

fs/open.c filp_open() dentry_open()

fs/exec.c sys_uselib() read_lock()

The filp_open() function performs the following

steps.

(1) Convert the requested path into the

"struct nameidata" using open_namei().

(2) Get the canonicalized pathname of the

"struct nameidata" obtained in step (1).

(3) If the kernel is running with accept mode,

grant the read permission of the

pathname obtained in step (2) to the

domain the subject process belongs to. If

the kernel is running with enforce mode,

check whether the read permission of the

pathname obtained in step (2) is granted

to the domain the subject process belongs

to, and return error if not granted.

(4) Open the file pointed by the "struct

nameidata" obtained in step (1) using

dentry_open().

Regarding sys_uselib(), the read permission is

checked before starting binary file type

matching test.

4.5. Access controls on write accesses

When opening files for writing, the write

permission is checked in the same manner of

opening files for reading. But there are more

write operation other than opening files for

writing. They are, newly creating files and

directories, deleting existent files and directories,

creating and deleting hard links, renaming

existent files and directories, creating and

deleting symbolic links, truncating files, and so

on. Therefore, we check the write permission in

the following places.

Filename Function Location to

check

fs/namei.c

open_namei()
vfs_create()

vfs_truncate()

sys_mknod()
vfs_create()

vfs_mknod()

sys_mkdir() vfs_mkdir()

sys_rmdir() vfs_rmdir()

sys_unlink() vfs_unlink()

sys_symlink() vfs_symlink()

sys_link() vfs_link()

do_rename() vfs_rename()

fs/open.c
filp_open() dentry_open()

do_sys_truncate() vfs_truncate()

We check write permission before calling the

VFS functions (functions whose name begins with

"vfs_"). Since the VFS functions don't handle

operations that cross mountpoints, the VFS

functions don't receive the information of

mountpoints (i.e. "struct vfsmnt" parameter). As a

result, we can't obtain the canonicalized

pathnames after entering into the VFS functions.

There are more operations that needs DAC's

write permissions such as changing owners and

permissions and timestamps, but we don't check

MAC's write permissions for such operations. We

check MAC's write permission for operations that

changes the content of files and directories, for we

have only one write permission.

We perform in the following way.

(1) Convert the requested pathname into the

"struct nameidata".

(2) Do the basic sanity checks for VFS

functions, such as crossing mountpoint

checks, the function that actually performs

is implemented, DAC's permission checks.

If any error occurs, return error.

7

(3) Get the canonicalized pathname from the

"struct nameidata" obtained in step (1).

(4) If the kernel is running with accept mode,

grant the write permission of the

pathname obtained in step (3) to the

domain the subject process belongs to. If

the kernel is running with enforce mode,

check whether the write permission of the

pathname obtained in step (3) is granted

to the domain the subject process belongs

to, and return error if not granted.

(5) Call the VFS function.

4.6. The timing of loading and saving policy

The policy files are loaded just prior to starting

/sbin/init. The policy files are saved just prior to

power fails in the shutdown script (i.e.

/etc/rc.d/init.d/halt) if the kernel is running with

accept mode. It is possible to save policy files in

arbitrary timing if the system is running with

accept mode.

4.7. The policy editor

The policy files of TOMOYO Linux consist of

ASCII printable text that is separated with

spaces and carriage returns, as shown in Fig. 3.

You can edit the policy files using arbitrary text

editors such as emacs. You can edit the domain

transition using CUI based policy editor, as

shown in Fig. 4. To represent all possible

characters, the characters whose value in ASCII

codebook are less or equals to 32(SP character)

and greater or equals to 127(DEL character) are

represented using "\ooo" style octal value, and "\"

itself is represented using "\\". For example, the

SP character is represented as "\040".

Fig. 3 An example policy

8

Fig. 4 Domain Transition Editor

5. Implementations of voluntarily discarding
privileges

We implemented a mechanism that allows

processes discard unnecessary privileges

voluntarily in addition to MAC.

For example, the process can "discard a

privilege to execute new program (i.e. calling

execve())" or "discard a privilege to reacquire root

privileges (i.e. becoming euid = 0)". This

mechanism allows restricting more tightly that

are already restricted by MAC's policy.

We describe a method that can improve

security with very simple implementations. Some

part of this method was already implemented in

SAKURA Linux [6].

5.1. The reason to use "task_struct"

In Linux, every process has a database named

"struct task_struct", as shown in Fig. 5.

Running Program

task_struct

Running Program

task_struct

Running Program

task_struct

Running Program

task_struct

Fig. 5 "struct task_struct"

This database holds information such as

process id, the owner id of the process, memory

usage, process's "/" directory, as shown in Fig. 6.

・Originally appended parameters

Contents of standard “task_struct”

・The name of running program

・The privileges the process has

・Memory usage

・The ID of process owner

・And many other parameters

・Originally appended parameters

Contents of standard “task_struct”

・The name of running program

・The privileges the process has

・Memory usage

・The ID of process owner

・And many other parameters

Fig. 6 The content of "struct task_struct"

This database is duplicated (as shown in Fig. 7)

when the parent process creates a child process

(i.e. calling do_fork() defined in kernel/fork.c), and

updated (as shown in Fig. 8) when the process

executes a new program (i.e. calling do_execve()

defined in fs/exec.c).

Current Program

(Parent)

Original

task_struct

Current Program

(A copy of Parent)

Duplicated

task_struct

DuplicateCurrent Program

(Parent)

Original

task_struct

Current Program

(A copy of Parent)

Duplicated

task_struct

Duplicate

Fig. 7 Duplicating "struct task_struct"

New Program

Updated

task_struct

Current Program

Duplicated

task_struct

Update
New Program

Updated

task_struct

Current Program

Duplicated

task_struct

Update

Fig. 8 Updating "struct task_struct"

All processes are the descendant of the

/sbin/init (the first program executed by kernel),

and they can inherit some contents of /sbin/init's

task_struct.

If a special content is added to this database,

the added contents are also inherited to

descendant processes. This means that, if the

parent process records a list of unnecessary

privileges, the child process created afterwards

inherits the list declared by the parent process.

9

・The domain the process belongs to

・The privileges the process discarded

voluntarily to improve security

・The domain the process belongs to

・The privileges the process discarded

voluntarily to improve security

Fig. 9 Originally appended parameters

We implemented the discarded privileges are

not recoverable. Actually, we added a variable (as

shown in Fig. 9) that records privileges that were

declared as "unnecessary to the process". When

the process declared the corresponding system

calls, the corresponding bit is set. When the

system calls that can be prohibited using this

mechanism are called, the bit state is checked,

and rejects the request or terminates process if

the bit is set.

"Who knows best about the necessary and

unnecessary privileges for programs?" "It's not

the kernel, but the programs themselves."

"The experts know best." is the principle of this

voluntarily access control mechanism. This

mechanism improves security by letting processes

declare unnecessary things at first. This

mechanism is exact reverse of MAC that lets the

kernel perform all access controls.

5.2. Disabling do_execve()

A process can discard the privilege to execute a

new program. If the parent process discarded this

privilege, the child processes created afterwards

cannot execute a new program. For example,

/bin/ls needn't to execute other programs. In this

case, by discarding the privilege to execute a new

program as soon as /bin/ls starts, /bin/sh won't be

invoked if /bin/ls has a vulnerability that allows

execution of arbitrary code. Most programs,

excluding some programs such as shells, needn't

to invoke a new program (i.e. calling do_execve()),

though they need to create their copies (i.e.

calling do_fork()). By discarding the privilege to

call do_execve(), it makes difficult for crackers to

execute shellcode by attacking vulnerabilities.

5.3. Disabling sys_chroot()

A process can discard the privilege to change

the "/" directory. The behavior is similar to

do_execve().

(TOMOYO Linux can also restrict the

directories that are allowed to chroot to using

sys_chroot() by policy, in addition to this

discarding privilege mechanism. In Linux, a

process can chroot to arbitrary directories, but it

is not preferable in the point of view of security.

By combining with SAKURA Linux [6], you can

forbid chroot'ing to writable directories so that

the cracker can’t build the directory tree with

malicious programs.)

5.4. Disabling sys_pivot_root()

A process can discard the privilege to exchange

"/" directory. The behavior is similar to

do_execve().

(TOMOYO Linux can also forbid calling

sys_pivotroot(), in addition to this discarding

privilege mechanism.)

5.5. Disabling sys_mount()

A process can discard the privilege to mount a

filesystem. The behavior is similar to do_execve().

(TOMOYO Linux can also restrict the

combinations of mountpoints and devices that are

allowed to mount using sys_mount() by policy, in

addition to this discarding privilege mechanism.

In Linux, a process can mount on arbitrary

directories, but it is not preferable in the point of

view of security. You can forbid mounting (for

example) tmpfs so that the cracker can’t build the

directory tree with malicious programs.)

5.6. Disabling reacquiring root privileges

In Linux, it is recommended to keep the

exercise of the system administrator's privileges

in the routine work as minimum as possible. This

is because the damage becomes larger if the

administrator did wrong operations. Therefore,

the style "Login as non-root, do regular operations

as non-root, and become root using /bin/su only

when the root privileges are essential" has been

established.

But we think that it seldom happens that a

process reacquires the root privileges (except for

the case administrator uses /bin/su) after the

process discarded the root privileges. An example

of reacquiring the root privileges happens when

10

the cracker attempts to acquire the root privileges

using a hijacked process.

Based on these assumptions, we implemented a

mechanism that can forbid reacquiring the root

privileges once the process discarded the root

privileges.

The checking of reacquisition of the root

privileges is done in the function

link_path_walk() defined in fs/namei.c. In nature,

this checking should be done in the system calls

that changes the process's privileges, but we dare

to do it in the link_path_walk() due to the

following two reasons.

・ Unexpected switching to the root

privileges may happen due to the

vulnerability of the system calls.

・ The function link_path_walk() is always

called to invoke the shell program with

the root privileges.

Strictly speaking, we can't forbid reacquiring

the root privileges. But the most operations that

handles pathnames call link_path_walk(), it is

possible to detect immediately regardless of the

location the process reacquired the root

privileges.

The process is forcefully terminated if the

function link_path_walk() detected the process

has reacquired the root privileges while the

process was forbidden to reacquire the root

privileges.

It is also possible to discard this privilege while

the process has the root privileges. In that case, it

takes place when the function link_path_walk()

detected that the process has discarded the root

privileges.

5.7. Some other examples

At this time, we only implemented discarding

privileges that are related to filesystem, but it is

possible to discard privileges that are not related

to filesystem in the same way. For example, it is

possible to discard a privilege to use TCP/IP, a

privilege to create a child process.

In contrast to discarding privileges, it is

possible to inherit only a part of the system

administrator's privileges using this mechanism.

For example, modify the kernel to allow the use of

TCP port 80 for processes that aren't running

with root privileges but has the information that

allows the use of TCP port 80 in their "struct

task_struct". The Apache without the root

privilege can use the TCP port 80 by invoking the

Apache after registering the information that

allows the use of TCP port 80 in the parent

process's "struct task_struct" that is running with

the root privileges.

5.8. Problems of voluntarily discarding privileges

features

There is no official interface that provides the

voluntarily discarding privileges mechanism. The

current implementation uses do_execve(), for this

function can receive variant numbers of string

parameters. This mechanism takes place when

the special keyword is passed to do_execve().

The modifications of source codes needed for

using this mechanism is trivial. It only requires

the insertion of a several lines, for all you need to

do is that "call the function that provides this

mechanism (in this case, do_execve()) with the

privileges to discard and the process ID".

We would like to entrust the arguments about

"What privileges should be discardable?" and

"What interface should be prepared?" to the

experts of Linux kernels. The contents described

in this chapter are our suggestions that it is

possible to improve security easily by utilizing the

"struct task_struct" aside from the MAC's policy

approaches.

6. Example applications for TOMOYO Linux

We confirmed the following applications are

runnable in a read-only medium by combining

SAKURA Linux [6] with TOMOYO Linux's

kernel. We are operating the following

applications in a USB flash memory with 1GB

capacity for demonstration environment.

 WWW Server (httpd-2.0.40-21.11)

 LXR + glimpse (lxr-0.3.1 +

glimpse-4.17.4)

 Another HTML-Lint

 WWW Server (Tomcat 4.1.30 + Java

1.4.2_04)

 FTP Server (vsftpd-1.1.3-8)

11

 DNS Server (bind-9.2.1-16

+ caching-nameserver-7.2-7)

 DHCP Server (dhcp-3.0pl1-23)

 SAMBA Server (samba-2.2.7a-8.9.0)

 F-Secure AntiVirus for SAMBA

 (fsavsamba-4.51-04011901)

 Mail Server (sendmail-8.12.8-9.90)

 OpenSSH Server

(openssh-server-3.5p1-11)

 Text Editor (emacs-21.2-33)

The most part of policy files necessary for these

applications are defined using accept mode. There

may be some applications that are not suitable

for operating in a read-only medium, but

TOMOYO Linux itself can support arbitrary

applications.

7. Conclusion

We think that the security enhanced Linux

becomes popular and the MAC becomes no

wonder in a near future. But the task of defining

policies for MAC is very laborious, and it is hard

to say that the MAC is manageable for everyone.

Our pathname-based MAC with accept mode

described in this paper can automate the very

laborious task of figuring out the necessary access

permissions for files and shared libraries, and is

easy to introduce and manage.

We also think that it is possible to improve

security by just adding several lines to existent

program's source code and recompiling, without

requiring policy files for MAC.

The MAC described in this paper can control

only files and directories, but we hope that this

approach helps developing MAC in a

straightforward way.

Acknowledgment: We were patiently supported

by Tetsuo Handa, NTT DATA CUSTOMER

SERVICE CORPORATION for developing the

prototype of TOMOYO Linux. We would like to

thank Mr. Handa.

Bibliography

[1] Peter A. Loscocco et al, The Inevitability of

Failure: The Flawed Assumption of Security

in Modern Computer Environments

[2] Toshiharu HARADA, "Building secure

systems." (Written in Japanese) Nikkei

SYSTEM INTEGRATION vol. April 2004, no.

132.

[3] P. Loscocco and S. Smalley. Integrating

Flexible Support for Security Policies into

the Linux Operating System. In Proceedings

of the FREENIX Track: 2001 USENIX

Annual Technical Conference

(FREENIX ’01), June 2001.

[4] National Security Agency,

Security-Enhanced Linux,

http://www.nsa.gov/selinux/

[5] Stephen Smalley et al. Implementing

SELinux as a Linux Security Module

[6] Toshiharu HARADA, Takashi HORIE and Kazuo

TANAKA, "Security Advancement Know-how

Upon Read-only Approach for Linux." Linux

Conference 2003,

http://sourceforge.jp/projects/tomoyo/documen

t/lc2003-en.pdf

[7] Toshiharu HARADA, Takashi HORIE and

Kazuo TANAKA, "Access policy generation

system based on process execution history"

Network Security Forum 2003,

http://sourceforge.jp/projects/tomoyo/documen

t/nsf2003-en.pdf

[8] Crispin Cowan et al, SubDomain:

Parsimonious Server Security, 14th USENIX

Systems Administration Conference (LISA

2000), December 2000.

Notes

This is a translation of the original paper,

which was written in Japanese and published in

Linux Conference 2004 held in Japan. You can

obtain the original paper from the following URL.

http://sourceforge.jp/projects/tomoyo/document/l

c2004.pdf

TOMOYO Linux was released on November, 11,

2005. You can get more information at the

following URLs.

http://tomoyo.sourceforge.jp/

http://sourceforge.jp/projects/tomoyo/

