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Abstract 

The security enhanced OSes are getting to be introduced as a method to improve 

security of computer systems. Many of security enhanced OSes performs access controls 

based on roles assigned to users and labels assigned to resources, but this approach 

tends to require very complicated policy files and is not always manageable for everyone. 

This paper describes the features and implementations of TOMOYO Linux, a security 

enhanced Linux kernel with automatic policy generation technology. TOMOYO Linux 

doesn't require labeling, and performs access control on processes. The approach of 

TOMOYO Linux makes it possible to perform simple but effective Mandatory Access 

Control. 

1. Introduction 

The access controls on files and directories in 

normal Linux/UNIX are performed based on access 

control information called "security bits" that are kept 

within the filesystem, and the owner of files and 

directories can change the access control information 

freely. Also, if the process that requested accesses is 

running with administrator's privileges, the access 

requests are always granted regardless of the access 

control information. Therefore, it is inevitable that the 

system gets completely damaged if the control of any 

processes that are running with administrator's 

privileges is wrested by (for example) attacking buffer 

overflow. This is known as security problem [1, 2]. To 

solve this security problem, MAC (Mandatory Access 

Control) was invented and open sourced 

implementations of MAC such as SELinux [3, 4] are 

appearing. Also, LSM (Linux Security Modules) [5], 

the framework to make security expansion easier, was 

incorporated into Linux 2.6 kernels and became 

available. 

The most of MAC implementations on Linux 

performs access control by "hooking system calls 

in the kernel space" and "checking the validity by 

comparing with policies supplied by 

administrators" and "processing only if the 

request is valid". In Linux, all functions are 

processed via system calls provided by the kernel, 

the method of hooking system calls can improve 

Linux's security for sure. But that method doesn't 

solve all problems. The introduction of MAC 

entails policy definition and management 

depending on the granularity of individual MAC 

implementations. Also, in SELinux, the identifier 

called "label" has to be assigned ALWAYS 

APPRICIATELY to resources such as files and 

directories. As a result, though the existent MAC 

implementations on Linux fill the requirement of 

functionality, there still remains the large barrier 

when considering actual introduction and 

operation. The authors of this paper (hereafter, 

we) have developed our original security 

enhanced Linux "TOMOYO Linux" to solve this 

barrier. 

2. TOMOYO Linux 

TOMOYO Linux is the acronym for "Task 

Oriented Management Obviates Your Onus on 

Linux" and is a security enhanced Linux kernel 

with the following features. 

・ Can generate policy automatically 

・ MAC based on the "struct task_struct" 

・ No labeling needed 

・ Possible to combine with SAKURA Linux 

・ Can discard unnecessary privileges 

voluntarily 

・ Beginners-friendly policy syntaxes 

・ Has CUI based policy editor 

We explain each feature below. 
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2.1. Automatic policy generation technology 

The MAC accepts or rejects strictly and 

precisely the access request based on policies 

predefined and supplied by administrators. 

Therefore, the administrators have to figure out 

all resources that might be accessed and grant 

permissions to them, and this makes actual 

operation more difficult. It is easy to operate if all 

files and directories that (for example) Apache 

(the HTTP server) accesses are listed in the 

Apache's configuration files, but it is impossible 

to do so. There are dynamically linked library 

files (that can be found by using "ldd" command), 

modules loaded on demand (that cannot be found 

by using "ldd" command), files accessed via 

multiple names due to hard links and symbolic 

links, and (for example) CGI programs and perl 

and ruby. The administrator has to figure out all 

files and directories and their access modes. It is 

easily understand that this is almost impossible. 

But the administrator has to do so to define policy 

needed for MAC. 

We focused attention on this problem, and have 

developed "Access policy generation system based 

on process execution history"[7]. This system 

captures and records access requests in the 

kernel space, and can generate about 90% of 

policies needed for MAC by just performing a 

series of operations the administrator wishes to 

allow. TOMOYO Linux implemented MAC using 

this technology. TOMOYO Linux can provide 

policy to administrators by booting with "accept 

mode" and performing a series of operations the 

administrator wishes to allow. The administrator 

can define just enough policy by editing and 

authorizing the policy provided by "accept mode". 

The biggest feature of TOMOYO Linux is that 

TOMOYO Linux has both "accept mode" that 

assists generating policy for MAC and "enforce 

mode" that performs MAC based on policy. 

Also the unique domain division rule allows 

administrators grant permissions to minimal 

resources to domains that are running the same 

program depending on their contexts. 

2.2. MAC based on the "struct task_struct" 

In Linux, the "struct task_struct" is designed 

and implemented to be inherited from parent 

process to child processes using fork() and 

execve() system calls. We focused on this feature 

and implemented original MAC without using 

LSM. The patch of our MAC implementation for 

standard kernels is very compact, and allows 

access controls based on process execution 

history. 

2.3. No labeling needed for files and directories 

In many MAC implementations including 

SELinux, the "label" is assigned to files and 

directories first and then policies are defined 

using "label". For example, to define policy that 

controls access to /etc/passwd, the administrator 

has to assign a label to both /etc/passwd and 

programs that access to /etc/passwd (such as 

/usr/bin/passwd). 

There are two problems. One is that it is 

laborious for administrators to assign appropriate 

labels to all resources. The other one is that it 

may happen that the binding of pathnames and 

labels accidentally get corrupted and as a result 

the appropriate access controls cannot be 

performed. To avoid these problems, TOMOYO 

Linux uses "canonicalized pathnames" instead of 

"labels", and allows administrators intuitive 

policy definition. 

2.4. Possible to combine with SAKURA Linux 

It becomes more secure by combining with 

(code name) SAKURA Linux [6] we have 

explained in Linux Conference 2003 to ensure 

physically programs and files are not being 

tampered with. (The logical protection  (i.e. 

mounting read-only) is not always tamper-proof, 

because the content of read-only mounted 

medium will be destroyed by directly writing to 

device files that corresponds to the medium. 

Therefore, physical protection is important.) 

2.5. Possible to discard voluntarily unnecessary 

privileges 

The security enhanced Linux implementations 

including SELinux use existent programs without 

modification, and restricts their behavior using 

policies. TOMOYO Linux needn't to modify 

existent programs, but TOMOYO Linux provides 
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existent programs a mechanism to discard 

unnecessary privileges voluntarily. It is possible 

to (for example) "discard a privilege to execute 

new program (i.e. calling execve())" or "discard a 

privilege to reacquire root privileges (i.e. 

becoming euid = 0)" by just inserting one line to 

existent programs. For example, if /usr/sbin/httpd 

needn't to execute new programs (for example, 

/bin/sh), by inserting a line that discards the 

privilege to call execve(), the control of 

/usr/sbin/httpd won't be wrested by execution of 

exploit code. There is no need for policy 

management for this mechanism. It is possible to 

apply this mechanism to restrict more tightly 

that are already restricted by MAC's policy. 

3. Considerations on "domain" 

3.1. The "domain" and "domain transition diagram" 

To perform MAC, the domain is assigned to 

each process, and restricts accessible resources 

for each domain. The state of a process changes 

when (for example) a new program is executed, 

and the process transits to different domain if 

conditions defined in the policy are met. By 

appropriately restricting domains that are 

allowed to transit to, the system's appropriate 

behaviors and securities are ensured.  

There is a flowchart called "domain transition 

diagram" to figure out the domain transitions 

visually. Whether the domain transition diagram 

is accessible for the administrator directly 

mirrors whether the administrator can figure out 

domain transitions correctly and define 

appropriate policy.  

The three types of domain transition diagram 

are shown below.  
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Fig. 1 No restrictions for domain transition 
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Fig. 2 Considering only the current domain for 

domain transition 
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Fig. 3 Considering the whole past domains for 

domain transition 

 

It makes possible to restrict the domains that 

can transit to by introducing MAC. In other 

words, before introducing MAC, a process can 

transit to arbitrary states as shown in Fig. 1. 

After introducing MAC, a process cannot transit 

to arbitrary states as shown in Fig. 2 and Fig. 3. 

Now, let's consider which of Fig. 2 and Fig. 3 is 

easier to understand.  

The Fig. 2 can reduce the total number of 

domains, but may yield infinite domain transition 

loop. If the total number of domains is small, the 

Fig. 2 is convenient. But if the total number of 

domains becomes larger, you can't trace the all of 

domain transitions. You can't even draw the 

domain transition diagram that precisely mirrors 

the system's behavior. Also, Fig. 2 makes more 

difficult to figure out the range of domains that 

are affected by the insertion or deletion of 

domains. You have to verify that the insertion or 

deletion of domains doesn't break the existent 
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paths needed for the system's appropriate 

behavior.  

The total number of domains in Fig. 3 becomes 

largest since all states are differentiated. But you 

can trace the all of domain transitions regardless 

of the total number of domains because the 

domain transitions are tree structured. You can 

always draw the domain transition diagram that 

precisely mirrors the system's behavior. Also, Fig. 

3 makes obvious to figure out the range of 

domains that are affected by the insertion or 

deletion of domains. You can easily verify the 

range. The Fig. 3 entails the cost of defining all 

domains. But the cost is dramatically reduced 

because the domains are assigned mechanically 

by adopting "Access policy generation system 

based on process execution history"[7] approach. 

We think the cost of defining all domains 

mechanically is much smaller than the cost of 

verifying all domains whenever a domain 

transition path is inserted or deleted manually. 

3.2. The "domain" in SELinux 

The SELinux adopts the domain transition of 

Fig. 2. Therefore, it makes difficult to figure out 

visually if the administrator attempts to divide 

existent domains into smaller domains to perform 

accesses controls more tightly. Also, since 

SELinux limits the letters that can be used for 

the name of domains and labels (for example, "/" 

is not allowed), the administrator can't use 

pathnames for the name of domains and labels, 

leading to non-intuitive bindings of "the name of 

domain and the name of individual programs" 

and "the name of label and the name of individual 

files". 

3.3. The "domain" in SubDomain 

The SubDomain[8] is a Linux that supports 

MAC developed by Immunix. The SubDomain can 

perform MAC mainly on files and directories and 

the execution of programs. The SubDomain 

adopts the domain transition of Fig. 3. Though it 

is impossible to perform MAC as fine-grained as 

SELinux, it is accessible for beginners because 

the structure is simple and the policy is defined 

using pathnames (unlike SELinux that requires 

labels). Our TOMOYO Linux supports some 

functions similar to SubDomain.  

3.4. The "domain" in TOMOYO Linux 

The TOMOYO Linux adopts the domain 

transition of Fig. 3. Also, TOMOYO Linux uses 

the pathnames of programs for the name of 

domains. Therefore, it makes easy to figure out 

and edit visually. Unlike Fig. 2, Fig. 3 can grant 

permissions to minimal resources for the same 

program considering the process's execution 

history.  

4. Implementations of MAC 

Our SAKURA Linux [6] can prevent files from 

being tampered with even if the system is 

wrested by the cracker. Though the cracker can't 

tamper with files, the cracker can execute 

arbitrary programs and read arbitrary files 

because the access control itself is not enforced, 

and this is a security problem. But by combining 

this system with TOMOYO Linux, it makes 

possible to perform the access control while 

preventing tampering. 

This chapter describes the abstract of MAC 

implementation in TOMOYO Linux.  

4.1. Access control based on canonicalized 

pathnames 

Many of MAC implementations perform access 

controls based on labels. These labels are, aside 

from existent pathnames, newly assigned 

identifiers used only for performing MAC. But, by 

right, there is no need to assign labels for files 

and directories, for the canonicalized pathnames 

are unique on that system and can be used as 

identifiers.  

By using pathnames for labels, it makes 

possible to figure out viscerally the binding of the 

subjects of accesses (i.e. processes) and the objects 

of accesses (i.e. resources). Also, the 

implementation becomes simpler because the 

system can always assume the correctness of 

labeling. This will become a great advantage in 

actual operations. We will briefly describe the 

procedure to derive the canonicalized pathnames 

below.  

4.1.1. The way of handling pathnames from the 
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user's view 

The userland programs handle pathname as a 

NULL terminated string. It is essential for users 

that users can handle pathnames using 

understandable string. 

4.1.2. The way of handling pathnames from the 

Linux kernel's view 

The kernel handles pathname using a structure 

named "struct nameidata", not a NULL 

terminated string. The kernel can't handle 

pathnames in the form of string. The procedure 

that converts the NULL terminated string into 

the "struct nameidata" is link_path_walk() 

defined in fs/namei.c. The "struct nameidata" 

contains the "struct dentry" and the "struct 

vfsmnt". The former holds the information of the 

file in the filesystem, and the latter holds the 

information of the mountpoint.  

4.1.3. The way to convert into canonicalized 

pathnames 

The "struct nameidata" is the form of 

representing pathnames in the kernel. The 

procedure that converts the "struct nameidata" 

into the NULL terminated string is __d_path() 

defined in fs/dcache.c. By using __d_path(), we 

can obtain the canonicalized pathnames (that has 

no symbolic links) that has already converted into 

the "struct nameidata".  

Since the __d_path() calculates up to only the 

process's "/" directory, we can't obtain the 

canonicalized pathnames if the process has 

already chroot'ed to somewhere. Therefore, we 

created a new function that ignores the process's 

"/" directory to obtain the canonicalized 

pathnames based on __d_path(). 

4.2. Domain transitions 

In TOMOYO Linux, every process always 

belongs to a domain, and the access permissions 

for files and directories are granted to each 

domain. But, the definition of domain in 

TOMOYO Linux differs from the definition in 

SELinux.  

The initial domain is the kernel, and is 

represented as "<kernel>". Since /sbin/init is 

invoked by the kernel, the domain for /bin/init is 

represented as "<kernel> /sbin/init". The domain 

for /etc/rc.d/rc invoked by /sbin/init is represented 

as "<kernel> /sbin/init /etc/rc.d/rc".  

Since the process invocation history that tells 

how the current process is invoked is maintained, 

the same program belongs to different domains if 

their parent domains differ. This allows 

administrators grant permissions to minimal 

resources for the same program depending on 

their contexts. Also, it is easy to edit the domain 

transition because the domain transition is tree 

structured.  

In the kernel space, there is a domain index 

table that converts the domain names into the 

domain numbers. From the point of process's view, 

the domain transition means the change of 

domain number.  

4.3. Access controls on execution of programs 

When invoking a program, the execution 

permission is checked.  

Filename Function Location to check 

fs/exec.c do_execve() open_exec() 

The do_execve() function performs the following 

steps. 

(1) Get the canonicalized pathname of the 

requested program. 

(2) If the kernel is running with accept mode, 

grant the execute permission of the 

pathname obtained in step (1) to the 

domain the subject process belongs to. If 

the kernel is running with enforce mode, 

check whether the execute permission of 

the pathname obtained in step (1) is 

granted to the domain the subject process 

belongs to, and return error if not granted.  

(3) Concatenate the name of the subject 

process's domain and the canonicalized 

pathname obtained in step (1), and hold 

the result as the name of the domain that 

subject process will belong to.  

(4) If the kernel is running with accept mode, 

register the name of domain obtained in 

step (3) into the domain index table. If the 

kernel is running with enforce mode, 

check whether the name of domain 

obtained in step (3) is registered in the 

domain index table, and return error if not 
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registered.  

(5) Continue the standard procedure of 

do_execve(), and transit to the domain 

obtained in step (3) if this procedure 

succeeded. In the standard procedure of 

do_execve(), we don't give the 

canonicalized pathname obtained in step 

(1), for there are programs that behave 

differently depending on their invocation 

name. For example, /sbin/pidof is a 

symbolic link to /sbin/killall5, and 

/sbin/pidof and /sbin/killall5 behave 

differently depending on their invocation 

name.  

4.4. Access controls on read accesses 

When opening files for reading or loading 

shared libraries, the read permission is checked. 

Filename Function Location to check 

fs/open.c filp_open() dentry_open() 

fs/exec.c sys_uselib() read_lock() 

The filp_open() function performs the following 

steps. 

(1) Convert the requested path into the 

"struct nameidata" using open_namei(). 

(2) Get the canonicalized pathname of the 

"struct nameidata" obtained in step (1). 

(3) If the kernel is running with accept mode, 

grant the read permission of the 

pathname obtained in step (2) to the 

domain the subject process belongs to. If 

the kernel is running with enforce mode, 

check whether the read permission of the 

pathname obtained in step (2) is granted 

to the domain the subject process belongs 

to, and return error if not granted.  

(4) Open the file pointed by the "struct 

nameidata" obtained in step (1) using 

dentry_open(). 

Regarding sys_uselib(), the read permission is 

checked before starting binary file type 

matching test.  

4.5. Access controls on write accesses 

When opening files for writing, the write 

permission is checked in the same manner of 

opening files for reading. But there are more 

write operation other than opening files for 

writing. They are, newly creating files and 

directories, deleting existent files and directories, 

creating and deleting hard links, renaming 

existent files and directories, creating and 

deleting symbolic links, truncating files, and so 

on. Therefore, we check the write permission in 

the following places.  

 

Filename Function Location to 

check 

fs/namei.c 

open_namei() 
vfs_create() 

vfs_truncate() 

sys_mknod() 
vfs_create() 

vfs_mknod() 

sys_mkdir() vfs_mkdir() 

sys_rmdir() vfs_rmdir() 

sys_unlink() vfs_unlink() 

sys_symlink() vfs_symlink() 

sys_link() vfs_link() 

do_rename() vfs_rename() 

fs/open.c 
filp_open() dentry_open() 

do_sys_truncate() vfs_truncate() 

We check write permission before calling the 

VFS functions (functions whose name begins with 

"vfs_"). Since the VFS functions don't handle 

operations that cross mountpoints, the VFS 

functions don't receive the information of 

mountpoints (i.e. "struct vfsmnt" parameter). As a 

result, we can't obtain the canonicalized 

pathnames after entering into the VFS functions.  

There are more operations that needs DAC's 

write permissions such as changing owners and 

permissions and timestamps, but we don't check 

MAC's write permissions for such operations. We 

check MAC's write permission for operations that 

changes the content of files and directories, for we 

have only one write permission.  

We perform in the following way.  

(1) Convert the requested pathname into the 

"struct nameidata".  

(2) Do the basic sanity checks for VFS 

functions, such as crossing mountpoint 

checks, the function that actually performs 

is implemented, DAC's permission checks. 

If any error occurs, return error.  
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(3) Get the canonicalized pathname from the 

"struct nameidata" obtained in step (1).  

(4) If the kernel is running with accept mode, 

grant the write permission of the 

pathname obtained in step (3) to the 

domain the subject process belongs to. If 

the kernel is running with enforce mode, 

check whether the write permission of the 

pathname obtained in step (3) is granted 

to the domain the subject process belongs 

to, and return error if not granted.  

(5) Call the VFS function. 

4.6. The timing of loading and saving policy 

The policy files are loaded just prior to starting 

/sbin/init. The policy files are saved just prior to 

power fails in the shutdown script (i.e. 

/etc/rc.d/init.d/halt) if the kernel is running with 

accept mode. It is possible to save policy files in 

arbitrary timing if the system is running with 

accept mode.  

4.7. The policy editor 

The policy files of TOMOYO Linux consist of 

ASCII printable text that is separated with 

spaces and carriage returns, as shown in Fig. 3. 

You can edit the policy files using arbitrary text 

editors such as emacs. You can edit the domain 

transition using CUI based policy editor, as 

shown in Fig. 4. To represent all possible 

characters, the characters whose value in ASCII 

codebook are less or equals to 32(SP character) 

and greater or equals to 127(DEL character) are 

represented using "\ooo" style octal value, and "\" 

itself is represented using "\\". For example, the 

SP character is represented as "\040". 

 

Fig. 3 An example policy 



8 

 

Fig. 4 Domain Transition Editor 

5. Implementations of voluntarily discarding 
privileges 

We implemented a mechanism that allows 

processes discard unnecessary privileges 

voluntarily in addition to MAC. 

For example, the process can "discard a 

privilege to execute new program (i.e. calling 

execve())" or "discard a privilege to reacquire root 

privileges (i.e. becoming euid = 0)". This 

mechanism allows restricting more tightly that 

are already restricted by MAC's policy.  

We describe a method that can improve 

security with very simple implementations. Some 

part of this method was already implemented in 

SAKURA Linux [6]. 

5.1. The reason to use "task_struct" 

In Linux, every process has a database named 

"struct task_struct", as shown in Fig. 5. 

Running Program

task_struct

Running Program

task_struct

Running Program

task_struct

Running Program

task_struct

 

Fig. 5 "struct task_struct" 

This database holds information such as 

process id, the owner id of the process, memory 

usage, process's "/" directory, as shown in Fig. 6.  

・Originally appended parameters

Contents of standard “task_struct”

・The name of running program

・The privileges the process has

・Memory usage

・The ID of process owner

・And many other parameters

・Originally appended parameters

Contents of standard “task_struct”

・The name of running program

・The privileges the process has

・Memory usage

・The ID of process owner

・And many other parameters

 

Fig. 6 The content of "struct task_struct" 

 

This database is duplicated (as shown in Fig. 7) 

when the parent process creates a child process 

(i.e. calling do_fork() defined in kernel/fork.c), and 

updated (as shown in Fig. 8)  when the process 

executes a new program (i.e. calling do_execve() 

defined in fs/exec.c). 

 

Current Program

(Parent)

Original

task_struct

Current Program

(A copy of Parent)

Duplicated

task_struct

DuplicateCurrent Program

(Parent)

Original

task_struct

Current Program

(A copy of Parent)

Duplicated

task_struct

Duplicate

 

Fig. 7 Duplicating "struct task_struct" 

New Program

Updated

task_struct

Current Program

Duplicated

task_struct

Update
New Program

Updated

task_struct

Current Program

Duplicated

task_struct

Update

 

Fig. 8 Updating "struct task_struct" 

All processes are the descendant of the 

/sbin/init (the first program executed by kernel), 

and they can inherit some contents of /sbin/init's 

task_struct.  

If a special content is added to this database, 

the added contents are also inherited to 

descendant processes. This means that, if the 

parent process records a list of unnecessary 

privileges, the child process created afterwards 

inherits the list declared by the parent process. 
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・The domain the process belongs to

・The privileges the process discarded 

voluntarily to improve security

・The domain the process belongs to

・The privileges the process discarded 

voluntarily to improve security
 

Fig. 9 Originally appended parameters 

 

We implemented the discarded privileges are 

not recoverable. Actually, we added a variable (as 

shown in Fig. 9) that records privileges that were 

declared as "unnecessary to the process". When 

the process declared the corresponding system 

calls, the corresponding bit is set. When the 

system calls that can be prohibited using this 

mechanism are called, the bit state is checked, 

and rejects the request or terminates process if 

the bit is set.  

"Who knows best about the necessary and 

unnecessary privileges for programs?" "It's not 

the kernel, but the programs themselves." 

"The experts know best." is the principle of this 

voluntarily access control mechanism. This 

mechanism improves security by letting processes 

declare unnecessary things at first. This 

mechanism is exact reverse of MAC that lets the 

kernel perform all access controls.  

5.2. Disabling do_execve() 

A process can discard the privilege to execute a 

new program. If the parent process discarded this 

privilege, the child processes created afterwards 

cannot execute a new program. For example, 

/bin/ls needn't to execute other programs. In this 

case, by discarding the privilege to execute a new 

program as soon as /bin/ls starts, /bin/sh won't be 

invoked if /bin/ls has a vulnerability that allows 

execution of arbitrary code. Most programs, 

excluding some programs such as shells, needn't 

to invoke a new program (i.e. calling do_execve()), 

though they need to create their copies (i.e. 

calling do_fork()). By discarding the privilege to 

call do_execve(), it makes difficult for crackers to 

execute shellcode by attacking vulnerabilities.  

5.3. Disabling sys_chroot() 

A process can discard the privilege to change 

the "/" directory. The behavior is similar to 

do_execve(). 

(TOMOYO Linux can also restrict the 

directories that are allowed to chroot to using 

sys_chroot() by policy, in addition to this 

discarding privilege mechanism. In Linux, a 

process can chroot to arbitrary directories, but it 

is not preferable in the point of view of security. 

By combining with SAKURA Linux [6], you can 

forbid chroot'ing to writable directories so that 

the cracker can’t build the directory tree with 

malicious programs.) 

5.4. Disabling sys_pivot_root() 

A process can discard the privilege to exchange 

"/" directory. The behavior is similar to 

do_execve(). 

(TOMOYO Linux can also forbid calling 

sys_pivotroot(), in addition to this discarding 

privilege mechanism.)  

5.5. Disabling sys_mount() 

A process can discard the privilege to mount a 

filesystem. The behavior is similar to do_execve(). 

(TOMOYO Linux can also restrict the 

combinations of mountpoints and devices that are 

allowed to mount using sys_mount() by policy, in 

addition to this discarding privilege mechanism. 

In Linux, a process can mount on arbitrary 

directories, but it is not preferable in the point of 

view of security. You can forbid mounting (for 

example) tmpfs so that the cracker can’t build the 

directory tree with malicious programs.) 

5.6. Disabling reacquiring root privileges 

In Linux, it is recommended to keep the 

exercise of the system administrator's privileges 

in the routine work as minimum as possible. This 

is because the damage becomes larger if the 

administrator did wrong operations. Therefore, 

the style "Login as non-root, do regular operations 

as non-root, and become root using /bin/su only 

when the root privileges are essential" has been 

established.  

But we think that it seldom happens that a 

process reacquires the root privileges (except for 

the case administrator uses /bin/su) after the 

process discarded the root privileges. An example 

of reacquiring the root privileges happens when 
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the cracker attempts to acquire the root privileges 

using a hijacked process.  

Based on these assumptions, we implemented a 

mechanism that can forbid reacquiring the root 

privileges once the process discarded the root 

privileges. 

The checking of reacquisition of the root 

privileges is done in the function 

link_path_walk() defined in fs/namei.c. In nature, 

this checking should be done in the system calls 

that changes the process's privileges, but we dare 

to do it in the link_path_walk() due to the 

following two reasons.  

・ Unexpected switching to the root 

privileges may happen due to the 

vulnerability of the system calls. 

・ The function link_path_walk() is always 

called to invoke the shell program with 

the root privileges. 

Strictly speaking, we can't forbid reacquiring 

the root privileges. But the most operations that 

handles pathnames call link_path_walk(), it is 

possible to detect immediately regardless of the 

location the process reacquired the root 

privileges.  

The process is forcefully terminated if the 

function link_path_walk() detected the process 

has reacquired the root privileges while the 

process was forbidden to reacquire the root 

privileges.  

It is also possible to discard this privilege while 

the process has the root privileges. In that case, it 

takes place when the function link_path_walk() 

detected that the process has discarded the root 

privileges. 

5.7. Some other examples 

At this time, we only implemented discarding 

privileges that are related to filesystem, but it is 

possible to discard privileges that are not related 

to filesystem in the same way. For example, it is 

possible to discard a privilege to use TCP/IP, a 

privilege to create a child process.  

In contrast to discarding privileges, it is 

possible to inherit only a part of the system 

administrator's privileges using this mechanism. 

For example, modify the kernel to allow the use of 

TCP port 80 for processes that aren't running 

with root privileges but has the information that 

allows the use of TCP port 80 in their "struct 

task_struct". The Apache without the root 

privilege can use the TCP port 80 by invoking the 

Apache after registering the information that 

allows the use of TCP port 80 in the parent 

process's "struct task_struct" that is running with 

the root privileges. 

5.8. Problems of voluntarily discarding privileges 

features 

There is no official interface that provides the 

voluntarily discarding privileges mechanism. The 

current implementation uses do_execve(), for this 

function can receive variant numbers of string 

parameters. This mechanism takes place when 

the special keyword is passed to do_execve(). 

The modifications of source codes needed for 

using this mechanism is trivial. It only requires 

the insertion of a several lines, for all you need to 

do is that "call the function that provides this 

mechanism (in this case, do_execve()) with the 

privileges to discard and the process ID". 

We would like to entrust the arguments about 

"What privileges should be discardable?" and 

"What interface should be prepared?" to the 

experts of Linux kernels. The contents described 

in this chapter are our suggestions that it is 

possible to improve security easily by utilizing the 

"struct task_struct" aside from the MAC's policy 

approaches. 

6. Example applications for TOMOYO Linux 

We confirmed the following applications are 

runnable in a read-only medium by combining 

SAKURA Linux [6] with TOMOYO Linux's 

kernel. We are operating the following 

applications in a USB flash memory with 1GB 

capacity for demonstration environment.  

 WWW Server  (httpd-2.0.40-21.11) 

 LXR + glimpse  (lxr-0.3.1 + 

glimpse-4.17.4) 

 Another HTML-Lint 

 WWW Server  (Tomcat 4.1.30 + Java 

1.4.2_04) 

 FTP Server    (vsftpd-1.1.3-8) 
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 DNS Server   (bind-9.2.1-16 

+ caching-nameserver-7.2-7) 

 DHCP Server  (dhcp-3.0pl1-23) 

 SAMBA Server (samba-2.2.7a-8.9.0) 

 F-Secure AntiVirus for SAMBA 

 (fsavsamba-4.51-04011901) 

 Mail Server  (sendmail-8.12.8-9.90) 

 OpenSSH Server 

(openssh-server-3.5p1-11) 

 Text Editor  (emacs-21.2-33) 

The most part of policy files necessary for these 

applications are defined using accept mode. There 

may be some applications that are not suitable 

for operating in a read-only medium, but 

TOMOYO Linux itself can support arbitrary 

applications.  

7. Conclusion 

We think that the security enhanced Linux 

becomes popular and the MAC becomes no 

wonder in a near future. But the task of defining 

policies for MAC is very laborious, and it is hard 

to say that the MAC is manageable for everyone.  

Our pathname-based MAC with accept mode 

described in this paper can automate the very 

laborious task of figuring out the necessary access 

permissions for files and shared libraries, and is 

easy to introduce and manage.  

We also think that it is possible to improve 

security by just adding several lines to existent 

program's source code and recompiling, without 

requiring policy files for MAC.  

The MAC described in this paper can control 

only files and directories, but we hope that this 

approach helps developing MAC in a 

straightforward way.  
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Notes 

This is a translation of the original paper, 

which was written in Japanese and published in 

Linux Conference 2004 held in Japan. You can 

obtain the original paper from the following URL. 

 

http://sourceforge.jp/projects/tomoyo/document/l

c2004.pdf 

 

TOMOYO Linux was released on November, 11, 

2005. You can get more information at the 

following URLs. 

 

http://tomoyo.sourceforge.jp/ 

http://sourceforge.jp/projects/tomoyo/ 


