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Abstract 
It is effective for improving the security of computer systems to introduce security 

enhanced OSes, but entails a new burden of managing appropriate policy to control 

access appropriately. This paper describes a method and know-how that prevents files 

from being tampered with, without entailing policy management, upon read-only approach. 

This method is suitable for WWW servers that deal with not-so-frequently-updated 

information such as software and documentations. This paper also suggests a tiny kernel 

patch that reduces the damage in case the system has been hijacked.  

1. Introduction 
The fact that it is impossible to ensure 

computer system's security with only measures of 
application level is getting to be recognized [1]. 
Linux OS, which is rewritten based on UNIX, 
inherited the simplicity that is the characteristics 
of UNIX and the too powerful root privileges and 
daemon programs that require the root privileges. 
This mechanism is known as the vulnerability of 
Linux's security. 

Researches on requirements and 
implementations of security mechanisms for 
trustworthy computer systems have been 
continued since 1980's as a procurement 
requirement of military systems of United States. 
The TCSEC (Trusted Computer Systems 
Evaluation Criteria)[2] published by DoD 
(Department of Defense) in December 1985 has 
been widely referenced as a practical 
international standard of requirement of secure 
computer systems, though the evaluation of the 
appropriateness for TCSEC has finished in 1999 
and new criteria has been proposed. 

NSA (National Security Agency) implemented 
MAC (Mandatory Access Control) that is placed 
as a major technology in TCSEC on mainstream 
Linux OS and released the implementation 
named SELinux (Security-Enhanced Linux) [3, 4, 
and 5]. SELinux realized the security level that 
pursues commercial trustworthy OSes (Trusted 
OS) as open sourced software. But SELinux 
required development of source codes that worth 
one tenth of source codes of Linux kernels, and 

entails new burden of managing policy files with 
several tens of thousands of lines to 
administrators. 

There is a simple method that can prevent 
tampering without entailing policy management. 
That is, use data that should be protected from 
tampering in a read-only mode. If a filesystem is 
mounted for read-only, even the administrator 
can't write to it. But if the filesystem is 
remounted for read-write by a cracker who 
deprived the administrator's privileges, the 
cracker can write to it. Therefore, it is not enough 
to just mount the filesystem for read-only. 
Therefore, the authors of this paper (hereafter, 
we) considered and realized a tamper-proof Linux 
server by combining the feature of read-only 
mounting and the medium that can provide 
physical write protection, without making 
massive modifications to Linux OS. 

2. Tamper protection by mounting read-only.  

2.1. The merits of read-only mounting. 
The access control in standard Linux/UNIX is 

performed access control information called 
"security bits" stored on the filesystem. This 
access control is called DAC (Discretionary 
Access Control), and the owner of resources (files 
or directories) can freely modify the information. 
The Linux kernel is made to always grant access 
requests if the process who requested access is 
running with the administrator's privileges (i.e. 
user id = 0) regardless of the information set or 
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modified by the owner of the resources. Therefore 
all files will be tampered with or deleted if the 
administrator's privileges are deprived by 
external attackers due to (for example) buffer 
overflow. 

The MAC is located as a method that realizes 
access controls that are applied without 
exception even to the administrator. But there 
are methods that can prevent resources from 
being tampered with without introducing MAC, 
such as mounting filesystem for read-only or 
using medium that provides physical write 
protection. 

If the system can work with the root filesystem 
(a partition that is mounted on "/" directory) 
mounted for read-only, important data such as 
/etc/passwd and commands such as /bin/ls and 
library files under /lib directories won't be 
illegally replaced by the legal administrator 
logged into the system from the local console or 
the cracker who penetrated and deprived the 
administrator's privileges into the system from 
network by attacking vulnerabilities. It will 
become possible to protect public servers such as 
WWW with a high security. The read-only 
mounting can't perform file-grained access 
controls like MAC that controls based on subject 
and object or SELinux that controls based on 
context, but the read-only mounting can realize 
stronger protection in the point of view of tamper 
protection. 

2.2. The problems in mounting Linux's root 
filesystem read-only.  

Since the standard Linux assumes to be 
installed into a medium that is writable (i.e. 
HDD), it is impossible to use Linux with the root 
filesystem mounted for read-only without 
modifications. To use Linux with the root 
filesystem mounted for read-only, the following 
three requirements have to be met. 

(a) The Linux boots properly and shutdowns 
properly. 

To provide services constantly, it is not 
enough if the Linux can boot properly but 
cannot shutdown properly. If writable 
partitions are provided by using tmpfs or 
loopback mounts, it is important to unmount in 

a correct order so that the Linux can shutdown 
properly. 
(b) Applications runs properly 

Applications that require writable areas are 
not limited to DBMS and mail servers. For 
example, Tomcat needs a writable area for 
compiling Java programs, many daemon 
programs needs a writable area for creating 
lock files used for remembering process IDs and 
performing exclusive access control. 
(c) Services and system can store log 

information 
Suppose the service itself doesn't require 

writable areas, the administrator needs log 
information to monitor the activity of services 
and system. Therefore, it is necessary to 
provide a writable area using a writable 
medium such as HDDs for storing logs about 
the services so that the administrator can refer 
the logs later when the root filesystem is 
mounted for read-only. 
2.2.1. Directories that needs to be writable in 
Linux. 
It is possible to boot Linux in single-user mode 

if the root filesystem is mounted without 
modifications. But the Linux can't proceed to the 
login prompt when the runlevel is changed to the 
multi-user mode because the /sbin/mingetty fails 
to change the owner of /dev/tty* (chown() fails due 
to read-only filesystem). 

The /tmp and /var directories are not essential 
for the OS itself and the users can direct the 
applications to use other directories. But these 
directories are conventionally used for creating 
temporary files and lock files for exclusive access 
control and storing process IDs for historical 
reasons, the administrator has to keep these 
directories writable. 

The /proc dir is managed by the procfs 
filesystem and no modifications are needed if the 
root filesystem is mounted for read-only. 

2.2.2. The way to prepare writable directories. 
There are several ways for providing writable 

directories when the root filesystem is stored in a 
read-only medium. 

(1) Using tmpfs 



The tmpfs is an on memory filesystem and 
available by default. The data kept in tmpfs is 
lost when the power fails, but tmpfs is useful if 
it doesn't matter. Since tmpfs is per a 
filesystem (mountpoint) basis, the 
administrator need to create symbolic links 
from the read-only root filesystem to the 
directory on tmpfs if per a file basis is needed. 
(2) Using devfs 

The devfs[6], a filesystem introduced in 
kernel version 2.3.46, is applicable to only /dev, 
but devfs can provide the contents of /dev 
directory on memory without using tmpfs. (Also, 
the udev available in kernel version 2.4 and 
later can provide /dev like devfs.) 

2.3. An example configuration  
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Fig. 1 Configuration for production environment  

Fig. 1 is an example configuration that uses a 
separated monitoring environment. The 
production environment can be diskless, for it is 
possible to transfer access logs from the 
production environment to the monitoring 
environment via network. 

Also, it is possible to configure that doesn't 
require a separated monitoring environment if 
the production environment has a HDD for 
storing access logs. 
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Fig. 2 Location of files.  

Fig. 2 is the location of files in the production 
environment. The inverted area is writable (i.e. 
HDD or RAM). The alternate long and short dash 
line areas are environments isolated by chroot(). 
The access logs won't be tampered with if the 
processes running in the isolated environments 
are hijacked, for the access logs are kept outside 
the isolated environments. 

3. Vulnerabilities other than tampering and 
countermeasurements. 

It is possible to perfectly prevent the data from 
being tampered with if we keep files that must 
not be tampered with in a physically write 
protected medium. But it is not enough if seen 
from the point of view of system operations. We 
explain some vulnerabilities that may created by 
a cracker who deprived the administrator's 
privileges and our countermeasurements against 
such vulnerabilities. 

3.1. Mounting writable filesystem on arbitrary 
directories. 

The physical write protection, to prevent 
programs and data from being tampered with, 
becomes useless if some partitions are mounted 
upon write protected partition such as /bin, for 
the processes refer the faked files on the mounted 
partition and this is equivalent to "resources were 
tampered with". To prevent such scenario from 
being happen, we modified the function 
sys_mount() so that the system can mount upon 
only directories that are allowed in advance. 

3 
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3.2. Execution of chroot() and pivot_root() 
To make Linux work, as aforementioned, the 

/var and /tmp directories need to be writable. A 
cracker with administrator's privileges can 
prepare a fake directory tree orienting from such 
directories and run malicious programs after 
chroot'ing to such directories. To prevent such 
scenario from being happen, we modified the 
function sys_chroot() so that the system can 
chroot to only directories that are allowed in 
advance. 

We also modified the function sys_pivot_root() 
that exchanges the "/" directory and other 
directory like chroot(). Specifically, we added a 
Boolean flag, and turn the flag on after the 
bootup procedure has completed. 

4. Implementation  
This chapter describes the implementations of 

our demonstration system that realizes all 
features aforementioned, including modifications 
of the kernel to ensure higher security. 

4.1. Implementations for read-only mounting. 
4.1.1. Modifications of linuxrc 
To keep the complete compatibility with ext2 

filesystem that are stored in media formatted 
other than ext2 filesystem, we didn't directly copy 
the directory tree. We made a loopback image file 
of ext2 filesystem and copied the directory tree to 
the loopback image file. 

See the chapter "The boot sequences of Linux" 
for the behavior of linuxrc. 

4.1.2. Relocating directory structure. 
Prepare a writable partition and mount it. 
Move the directories that have to be writable to 

the writable partition, and create symbolic links 
from the directories in read-only partition to the 
directories in writable partition. 

Generate a script program that automatically 
creates directories in writable partition, which is 
needed only if the writable partition is volatile (i.e. 
tmpfs). 

We don't explain detailed procedure here. 

4.2. Implementations for improving security. 
4.2.1. Modifications of kernel  
(1) Restricting mount operations  

We modified the kernel so that the kernel 
rejects mount requests (and remount requests) 
that attempt to mount on directories that are 
not allowed by policy. Actually, register the 
given combination of mountpoint and device 
file when the sys_mount() was called with 
keyword "protect". On the subsequent calls of 
sys_mount(), the kernel checks the combination 
of mountpoint and  device file and rejects the 
request if the combination is not registered. 
The chance of registration is only once so that 
the cracker can't append combinations of 
mountpoint and device file, and the registered 
configuration remains until reboot. 
(2) Restricting chroot operations 

There is a possibility that a cracker who 
deprived the root privileges creates a directory 
tree oriented from writable partitions such as 
/var, and run programs after chroot'ed to that 
partition. To prevent such scenario from being 
happened, we modified the kernel so that the 
kernel rejects chroot requests that attempts to 
chroot to directories that are not allowed by 
policy. Actually, register the given directories 
when the sys_chroot() was called with keyword 
"protect:". On the subsequent calls of 
sys_chroot(), the kernel checks the directory 
and rejects the request if the directory is not 
registered. The chance of registration is only 
once, and the registered configuration remains 
until reboot. 
(3) Restricting pivot_root operations 

There is a possibility that a cracker who 
deprived the root privileges creates a directory 
tree oriented from writable partitions such as 
/var, and run programs after exchanging the "/" 
and the writable directory. To prevent such 
scenario from being happened, we modified the 
kernel so that the kernel rejects pivot_root 
requests if it is once forbidden by policy. 
Actually, call the sys_pivot_root() with keyword 
"protect", and on the subsequent calls of 
sys_pivot_root() are unconditionally forbidden. 
(4) Restricting execve operations 

This modification is unrelated to 
vulnerabilities that can't be solved by read-only 
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mounting. This is a modification to reduce the 
possibility of processes being hijacked by a 
cracker. Many codes that attempt to hijack the 
system uses the system call execve() to launch 
a shell or a terminal. By discarding the 
privilege to call execve() when the process no 
longer need to launch a new program, it 
becomes difficult for crackers to hijack. 
Actually, we added a Boolean variable in the 
"struct task_struct" (database used to manage 
processes). The kernel checks this variable 
when sys_execve() is called. If sys_execve() was 
called with the keyword "protect:", the kernel 
turns on this variable of each process whose ID 
is given with the keyword so that the processes 
whose IDs are given with the keyword won't be 
able to call sys_execve(). This variable remains 
until the process terminates, and inherited by 
the child processes created afterwards. The 
current implementation is to forbid 
unconditionally, but it will be possible to allow 
execution of only specific programs (for 
example, allow execution of java compiler 
programs for java processes). 
4.2.2. Newly created utility programs  
These utilities are wrapper programs that 

enable extensions of the modified kernel 
aforementioned, and assumed to be used by the 
legal administrator. (We assume the legal 
administrator defines policy before a cracker 
deprives the administrator's privileges.) 

(1) limitmount 
A wrapper program that calls sys_mount() 

with the keyword "protect". Use this program 
within the bootup scripts under the /etc/rc.d 
directory so that this program is invoked 
automatically on system's bootup procedure. 
(2) limitchroot 

A wrapper program that calls sys_chroot() 
with the keyword "protect:". Use this program 
within the bootup scripts under the /etc/rc.d 
directory so that this program is invoked 
automatically on system's bootup procedure. 
(3) limitpivot 

A wrapper program that calls 
sys_pivot_root() with the keyword "protect". 

Use this program within the bootup scripts 
under the /etc/rc.d directory so that this 
program is invoked automatically on system's 
bootup procedure. 
(4) limitexec 

A wrapper program that calls sys_execve() 
with the keyword "protect:". This program can 
be invoked as many times as the administrator 
wants. 
4.2.3. The value of these modifications. 
The modifications to the kernels 

aforementioned are made as 
countermeasurements against vulnerabilities 
that cannot be solved by write protection only. If 
the administrator doesn't worry about these 
vulnerabilities, the administrator can operate 
Linux with root filesystem mounted for read-only 
without using our modified kernel. But we don't 
recommend using normal kernel. The other way 
around, we think the standard kernel wants some 
countermeasurements against vulnerabilities we 
have mentioned in this paper. 

4.3. Implementations for building chroot'ed 
environments 

It is important that chroot'ed processes can 
access minimal files if the administrator wishes 
to introduce isolated environments using chroot. 
Even if the administrator introduced isolated 
environments, if the processes can access to 
unnecessary devices and programs, the damage 
becomes bigger when the isolated environments 
are cracked. But it is not easy to pick out minimal 
files. Therefore, we developed a custom kernel 
that can automatically pick up only necessary 
files that are needed for applications running in 
isolated environments. 

The principle is "Record all pathnames that are 
passed to functions that converts from pathnames 
into inode structure". But this is not enough, for 
this will pick out all pathnames accessed by all 
processes but we want only pathnames accessed 
by isolated applications. Therefore, we added a 
variable to the "struct task_struct" that holds the 
process ID that called the chroot() for the last 
time so that the kernel can determine whether a 
process is running in an isolated environment or 
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not by checking the value of this variable 
whenever the process requests a pathname. When 
the chroot() is called, the process ID is recorded. 
Since the "struct task_struct" is inherited by child 
processes, it is possible to group by process ID by 
performing chroot for once. 

Next, we explain how to obtain the pathnames. 
To get the list of files that are accessed in a 
chroot'ed environment, it is possible to copy all 
files into the chroot'ed environment prior to 
chroot and then delete files that were not 
accessed. But actually, we needn't to do so. We 
can chroot to the current "/" directory. By calling 
the chroot(), the process ID is recorded in the 
"struct task_struct". In this way, we can get only 
the files that are accessed by chroot'ed processes 
easily and cover all necessary files because the 
range of accessible files doesn't change. 

 
To implement this feature, we made the 

following six modifications to the kernel. 
(1) include/linux/sched.h：task_struct 

Add a variable that holds a process ID. 
(2) fs/open.c：sys_chroot() 

Records the process ID into the variable in 
(1). 

(3) fs/namei.c：link_path_walk() 
Pass the requested pathname to the 

function in (6). 
(4) fs/stat.c：sys_readlink() 

This is a readout window of accumulated 
logs kept in the function in (6). We don't use 
syslog, for the function printk() is not thread-safe 
and the logs may get corrupted. 

(5) Newly created function that calculated the 
current directory of the current process. 

(6) Newly created function that accumulates 
logs. If the given pathname is a relative 
pathname, converts into an absolute pathname by 
calling the function in (5). 

 
Since we use an existent function as a readout 

window, we needn't to export a newly created 
function from the kernel as a system call. 
Therefore, this implementation is applicable to 
other kernels that have more system calls. 

 
Also, we developed the following tools that read 

the access logs and copy files into the isolated 
environment. 

(1) A program that reads access logs using 
readlink(). 

(2) A program that copies minimal files into the 
isolated environment that exist and are accessed 
by the chroot'ed processes based on access logs. 

 
We confirmed that we can run Apache and 

Tomcat in chroot'ed environments with minimal 
files needed for these services using this kernel. 
Some files such as WWW contents that won't be 
accessed by just starting and terminating Apache 
need to be copied manually, but it won't matter 
because the pathnames of such files are obvious. 
This kernel is not applicable to this system, this 
is widely applicable when building chroot'ed 
environment. 

 

5. Existent technologies used in this system 
We can't explain the actual procedure of 
making "/" partition that can be mounted for 
read-only due to limitations of space. Instead, 
we introduce existent technologies and tools 
used by this system and the result of 
performance test. 

5.1. Technologies used in this system  
5.1.1. devfs 
devfs is a filesystem managed by the kernel 

space that provides the contents of /dev directory. 
At the point of kernel version 2.4.18-14, devfs is 
considered as EXPERIMENTAL and disabled by 
default. But by mounting devfs on /dev directory, 
it becomes possible to mount "/" directory as 
read-only. 

Since devfs also provides the functionality of 
devpts filesystem, disable devpts when enabling 
devfs at the kernel compilation time.  

5.1.2. iptables 
Iptables is used to set up, maintain, and 

inspect the tables of IP packet filter rules in the 
Linux kernel. Several different tables may be 
defined. Each table contains a number of built-in 
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chains and may also contain user-defined chains. 
Each chain is a list of rules which can match a 

set of packets. Each rule specifies what to do with 
a packet that matches. This is called a 'target', 
which may be a jump to a user-defined chain in 
the same table. 

By using this function, it is possible to redirect 
packets that arrived at privileged ports (ports 
whose numbers are less than 1024) to other ports. 
Therefore, applications that require root 
privileges only for opening privileged ports can 
start without root privileges. 

5.1.3. Named pipes (FIFO)  
A FIFO special file (a named pipe) is similar to 

a pipe, except that it is accessed as part of the file 
system. It can be opened by multiple processes for 
reading or writing. When processes are 
exchanging data via the FIFO, the kernel passes 
all data internally without writing it to the file 
system. Thus, the FIFO special file has no 
contents on the file system, the file system entry 
merely serves as a reference point so that 
processes can access the pipe using a name in the 
file system. 

Therefore, it is possible to use FIFO in a 
filesystem that is physically write-protected. 
There is a limitation that FIFO cannot do seek 
operation, but the applications can write to FIFO 
as well as regular files in a writable filesystem if 
the FIFO is used for append only such as log files. 

5.1.4. ISO filesystem 
ISO filesystem is used widely by CD-ROMs. 

The program mkisofs is used to create ISO image 
files. 

mkisofs is effectively a pre-mastering program 
to generate an ISO9660/JOLIET/HFS hybrid 
filesystem. mkisofs takes a snapshot of a given 
directory tree, and generates a binary image 
which will correspond to an ISO9660 or HFS 
filesystem when written to a block device. 

mkisofs is capable of generating the System 
Use Sharing Protocol records (SUSP) specified by 
the Rock Ridge Interchange Protocol. This is used 
to further describe the files in the iso9660 
filesystem to a unix host, and provides 
information such as longer filenames, uid/gid, 

posix permissions, symbolic links, block and 
character devices.  

5.2. The features of demonstration system 
 The system files and programs are never 

tampered with. 
 Provides two services (Apache and Tomcat), 

which the application effect of this approach 
is considered larger. 

 These services can't access to system files 
and log files even if cracked, for they run 
under the chroot'ed environment. 

 The administrator's privileges won't be 
deprived via these services, for these services 
don't require the administrator's privileges 
from the beginning. 

 The access logs won't be deleted even if 
cracked, for FIFOs are used for access logs. 

5.3. The performance of demonstration system 
Our approach doesn't affect the system's 

performance because we didn't make massive 
modifications to the kernel like MAC. We 
measured the performance of transferring WWW 
contents kept in the root filesystem recorded in a 
CD-R. 

 
Server: Dell PowerEdge 1550 
CPU: Pentium III 1GHz 
RAM: 1280MB 
CD-ROM: Max. X24 read  
Size of WWW data: 40170370 Bytes 
Measurement method: Download using wget 
 
The result is shown in Fig. 3. For the first trial 

it is very slow, but for the subsequent trials they 
aren't. For the first trial, the necessary files are 
searched from CD-R and read and transferred, 
but for the subsequent trials, the necessary data 
is transferred from cache that is on the RAM. 



 
Fig. 3 The transfer speed of WWW contents  

6. Reference: The boot sequences of Linux 
In this chapter we briefly review the boot 

sequence of Linux and explain about 
modifications we made to provide services using 
read-only mounting. 

6.1. From the boot to the invocation of linuxrc 
（1） The bootloader program reads 

compressed kernel image file (vmlinuz) and 
decompresses it onto RAM, and gives control 
to the kernel. 

（2） The vmlinuz reads a file named 
initrd.img and decompresses it onto RAM and 
mount it on "/" directory. 

（3） The vmlinuz executes a program named 
linuxrc that is located in the "/" directory of 
decompressed image. The linuxrc is a script 
and interpreted by nash (very compact shell 
program) that is dedicated for running linuxrc 
script. 

6.2. The role of linuxrc and modifications we 
made 

The linuxrc performs mainly the following two 
tasks. 
・ Load device driver modules that are needed 

for mounting real root device (usually a 
HDD). 

・ Mount the real root device for read-only. 
(During this task, pivot_root() is called to 
switch the "/" directory.) 

Our method mounts root filesystem using 
loopback so that the administrators can do 
version control easily. Therefore, we added a task 
that mounts pre-created image file that contains 

the contents of root filesystem in addition to 
standard tasks listed above. 

6.3. After the invocation of /sbin/init 
When the execution of initrd.img finished, the 

root filesystem is already mounted, and the 
kernel gives control to /sbin/init. /sbin/init 
executes /etc/rc.sysinit script. In this script, root 
filesystem is remounted for read-write. After this 
script, /sbin/init enters to the specified runlevel 
and executes startup scripts for that runlevel. 
Finally, it becomes possible for users to login. 

We made the following modifications in startup 
scripts so that the services won't abort due to the 
root filesystem remaining mounted for read-only. 

・ Comment out the writability tests used to 
test the user is root 

・ Prepare the contents of /dev directory (if 
devfs is not used) 

7. Possibility of applying our method 

7.1. The use of media other than CD-R 
We used CD-R as a recording medium, but it is 

impossible to use CD-R for protecting massive 
data due to the medium's capacity limitation. But 
the technique of mounting ext2-formatted root 
filesystem using loopback allows users use 
arbitrary media formatted with arbitrary 
filesystem. Therefore, it is possible to use (for 
example) DVD-R as well.  

Also, HDDs that can do write protection at 
hardware level (i.e. independent with OS) are 
coming to market. By combining with such 
products, it is possible to protect massive amount 
of data from tampering without loosing 
performance. 

7.2. Other applications of read-only mounting 
The significance of read-only mounting is not 

limited to preventing configurations of system 
and applications. 

In standard Linux, all information including 
access logs become unreliable if the 
administrator's privileges were deprived (because 
the administrator is free from access controls). 
But the policy files remains reliable if they are 
kept in a read-only medium using our method. 

8 
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The administrator can be confident in programs 
for incident detection and incident response kept 
in a read-only medium even after the 
administrator's privileges were deprived. 

7.3. Distribution Dependency 
We think that it is possible to apply our 

approach to distributions other than Red Hat 
Linux, for our approach doesn't entail massive 
modifications of kernels. 

The patches and the tools our system uses are 
very small, and the modifications are closed 
within specific system calls. We think it is easy to 
port to other distribution’s kernels. 

8. Conclusion 
The MAC implementations on Linux such as 

SELinux, RSBAC[7] demonstrated the possibility 
of improving Linux's security. But they entail 
management of enormous quantity of policy and 
loss of performance due to authorization of 
system call requests, and it is difficult to say that 
they are aiming at everyone.  

The method described in this paper that 
mounts root filesystem for read-only can prevent 
files from being tampering with even the 
administrator's privileges are deprived, without 
entailing management of policy. This method is 
effective by itself, but it offers stronger protection 
by applying tiny patches to the kernel that 
restricts chroot, pivot_root and mount operations. 
We think that these patches are also effective for 
systems that don't mount root filesystem for 
read-only. 

The technologies such as devfs, iptables and 
chroot are already incorporated into the kernel 
and used, and the usage of these technologies in 
this paper is nothing new. The restriction of 
execve itself is not versatile and the applicable 
scope is limited, but this is a result of attempts 
for improving Linux's security with minimal 
modifications to Linux. We hope you find our 
approach informative. 
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Notes 
This is a translation of the original paper, 

which was written in Japanese and published in 
Linux Conference 2003 held in Japan. You can 
obtain the original paper from the following URL. 

 
http://sourceforge.jp/projects/tomoyo/document/l
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c2003.pdf 
 
The technology shown in this paper was 

incorporated into TOMOYO Linux. 
TOMOYO Linux was released on November, 11, 

2005. You can get more information at the 
following URLs. 

 
http://tomoyo.sourceforge.jp/ 
http://sourceforge.jp/projects/tomoyo/ 
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