
1

Security Advancement Know-how Upon Read-only Approach for Linux.

Toshiharu HARADA, Takashi HORIE and Kazuo TANAKA,
Research and Development Headquarters, NTT DATA CORPORATION

e-mail: {haradats, horietk, tanakakza}@nttdata.co.jp

Abstract
It is effective for improving the security of computer systems to introduce security

enhanced OSes, but entails a new burden of managing appropriate policy to control

access appropriately. This paper describes a method and know-how that prevents files

from being tampered with, without entailing policy management, upon read-only approach.

This method is suitable for WWW servers that deal with not-so-frequently-updated

information such as software and documentations. This paper also suggests a tiny kernel

patch that reduces the damage in case the system has been hijacked.

1. Introduction
The fact that it is impossible to ensure

computer system's security with only measures of
application level is getting to be recognized [1].
Linux OS, which is rewritten based on UNIX,
inherited the simplicity that is the characteristics
of UNIX and the too powerful root privileges and
daemon programs that require the root privileges.
This mechanism is known as the vulnerability of
Linux's security.

Researches on requirements and
implementations of security mechanisms for
trustworthy computer systems have been
continued since 1980's as a procurement
requirement of military systems of United States.
The TCSEC (Trusted Computer Systems
Evaluation Criteria)[2] published by DoD
(Department of Defense) in December 1985 has
been widely referenced as a practical
international standard of requirement of secure
computer systems, though the evaluation of the
appropriateness for TCSEC has finished in 1999
and new criteria has been proposed.

NSA (National Security Agency) implemented
MAC (Mandatory Access Control) that is placed
as a major technology in TCSEC on mainstream
Linux OS and released the implementation
named SELinux (Security-Enhanced Linux) [3, 4,
and 5]. SELinux realized the security level that
pursues commercial trustworthy OSes (Trusted
OS) as open sourced software. But SELinux
required development of source codes that worth
one tenth of source codes of Linux kernels, and

entails new burden of managing policy files with
several tens of thousands of lines to
administrators.

There is a simple method that can prevent
tampering without entailing policy management.
That is, use data that should be protected from
tampering in a read-only mode. If a filesystem is
mounted for read-only, even the administrator
can't write to it. But if the filesystem is
remounted for read-write by a cracker who
deprived the administrator's privileges, the
cracker can write to it. Therefore, it is not enough
to just mount the filesystem for read-only.
Therefore, the authors of this paper (hereafter,
we) considered and realized a tamper-proof Linux
server by combining the feature of read-only
mounting and the medium that can provide
physical write protection, without making
massive modifications to Linux OS.

2. Tamper protection by mounting read-only.

2.1. The merits of read-only mounting.
The access control in standard Linux/UNIX is

performed access control information called
"security bits" stored on the filesystem. This
access control is called DAC (Discretionary
Access Control), and the owner of resources (files
or directories) can freely modify the information.
The Linux kernel is made to always grant access
requests if the process who requested access is
running with the administrator's privileges (i.e.
user id = 0) regardless of the information set or

2

modified by the owner of the resources. Therefore
all files will be tampered with or deleted if the
administrator's privileges are deprived by
external attackers due to (for example) buffer
overflow.

The MAC is located as a method that realizes
access controls that are applied without
exception even to the administrator. But there
are methods that can prevent resources from
being tampered with without introducing MAC,
such as mounting filesystem for read-only or
using medium that provides physical write
protection.

If the system can work with the root filesystem
(a partition that is mounted on "/" directory)
mounted for read-only, important data such as
/etc/passwd and commands such as /bin/ls and
library files under /lib directories won't be
illegally replaced by the legal administrator
logged into the system from the local console or
the cracker who penetrated and deprived the
administrator's privileges into the system from
network by attacking vulnerabilities. It will
become possible to protect public servers such as
WWW with a high security. The read-only
mounting can't perform file-grained access
controls like MAC that controls based on subject
and object or SELinux that controls based on
context, but the read-only mounting can realize
stronger protection in the point of view of tamper
protection.

2.2. The problems in mounting Linux's root
filesystem read-only.

Since the standard Linux assumes to be
installed into a medium that is writable (i.e.
HDD), it is impossible to use Linux with the root
filesystem mounted for read-only without
modifications. To use Linux with the root
filesystem mounted for read-only, the following
three requirements have to be met.

(a) The Linux boots properly and shutdowns
properly.

To provide services constantly, it is not
enough if the Linux can boot properly but
cannot shutdown properly. If writable
partitions are provided by using tmpfs or
loopback mounts, it is important to unmount in

a correct order so that the Linux can shutdown
properly.
(b) Applications runs properly

Applications that require writable areas are
not limited to DBMS and mail servers. For
example, Tomcat needs a writable area for
compiling Java programs, many daemon
programs needs a writable area for creating
lock files used for remembering process IDs and
performing exclusive access control.
(c) Services and system can store log

information
Suppose the service itself doesn't require

writable areas, the administrator needs log
information to monitor the activity of services
and system. Therefore, it is necessary to
provide a writable area using a writable
medium such as HDDs for storing logs about
the services so that the administrator can refer
the logs later when the root filesystem is
mounted for read-only.
2.2.1. Directories that needs to be writable in
Linux.
It is possible to boot Linux in single-user mode

if the root filesystem is mounted without
modifications. But the Linux can't proceed to the
login prompt when the runlevel is changed to the
multi-user mode because the /sbin/mingetty fails
to change the owner of /dev/tty* (chown() fails due
to read-only filesystem).

The /tmp and /var directories are not essential
for the OS itself and the users can direct the
applications to use other directories. But these
directories are conventionally used for creating
temporary files and lock files for exclusive access
control and storing process IDs for historical
reasons, the administrator has to keep these
directories writable.

The /proc dir is managed by the procfs
filesystem and no modifications are needed if the
root filesystem is mounted for read-only.

2.2.2. The way to prepare writable directories.
There are several ways for providing writable

directories when the root filesystem is stored in a
read-only medium.

(1) Using tmpfs

The tmpfs is an on memory filesystem and
available by default. The data kept in tmpfs is
lost when the power fails, but tmpfs is useful if
it doesn't matter. Since tmpfs is per a
filesystem (mountpoint) basis, the
administrator need to create symbolic links
from the read-only root filesystem to the
directory on tmpfs if per a file basis is needed.
(2) Using devfs

The devfs[6], a filesystem introduced in
kernel version 2.3.46, is applicable to only /dev,
but devfs can provide the contents of /dev
directory on memory without using tmpfs. (Also,
the udev available in kernel version 2.4 and
later can provide /dev like devfs.)

2.3. An example configuration

Immediate transfer
of access logs

Monitoring
Environment

Production
Environment

Hard Disks

↑

Application programs

＋

Development tools

＋

Storage area for
access logs

CD-ROMs

↑

Application programs ＋ Static data

Hard disks or RAM

↑

Working area

Tamper-Proof！

Possible to build both environment on one PC!

Immediate transfer
of access logs

Monitoring
Environment

Production
Environment

Hard Disks

↑

Application programs

＋

Development tools

＋

Storage area for
access logs

CD-ROMs

↑

Application programs ＋ Static data

Hard disks or RAM

↑

Working area

Tamper-Proof！

Possible to build both environment on one PC!

Fig. 1 Configuration for production environment

Fig. 1 is an example configuration that uses a
separated monitoring environment. The
production environment can be diskless, for it is
possible to transfer access logs from the
production environment to the monitoring
environment via network.

Also, it is possible to configure that doesn't
require a separated monitoring environment if
the production environment has a HDD for
storing access logs.

Application programs

Application data

(such as WWW contents)

Working Area
↑↓Isolation by chroot

Application programs

Application data

Working Area

Working Area

Kernels

Application programs

Library files

Driver modules

Storage area for
access logs

(if no external storage)

Accessible from

outside of chroot

Inaccessible from inside of chroot

FIFO for
access log

FIFO for
access log

Application programs

Application data

(such as WWW contents)

Working Area
↑↓Isolation by chroot

Application programs

Application data

Working Area

Working Area

Kernels

Application programs

Library files

Driver modules

Storage area for
access logs

(if no external storage)

Accessible from

outside of chroot

Inaccessible from inside of chroot

FIFO for
access log

FIFO for
access log

Fig. 2 Location of files.

Fig. 2 is the location of files in the production
environment. The inverted area is writable (i.e.
HDD or RAM). The alternate long and short dash
line areas are environments isolated by chroot().
The access logs won't be tampered with if the
processes running in the isolated environments
are hijacked, for the access logs are kept outside
the isolated environments.

3. Vulnerabilities other than tampering and
countermeasurements.

It is possible to perfectly prevent the data from
being tampered with if we keep files that must
not be tampered with in a physically write
protected medium. But it is not enough if seen
from the point of view of system operations. We
explain some vulnerabilities that may created by
a cracker who deprived the administrator's
privileges and our countermeasurements against
such vulnerabilities.

3.1. Mounting writable filesystem on arbitrary
directories.

The physical write protection, to prevent
programs and data from being tampered with,
becomes useless if some partitions are mounted
upon write protected partition such as /bin, for
the processes refer the faked files on the mounted
partition and this is equivalent to "resources were
tampered with". To prevent such scenario from
being happen, we modified the function
sys_mount() so that the system can mount upon
only directories that are allowed in advance.

3

4

3.2. Execution of chroot() and pivot_root()
To make Linux work, as aforementioned, the

/var and /tmp directories need to be writable. A
cracker with administrator's privileges can
prepare a fake directory tree orienting from such
directories and run malicious programs after
chroot'ing to such directories. To prevent such
scenario from being happen, we modified the
function sys_chroot() so that the system can
chroot to only directories that are allowed in
advance.

We also modified the function sys_pivot_root()
that exchanges the "/" directory and other
directory like chroot(). Specifically, we added a
Boolean flag, and turn the flag on after the
bootup procedure has completed.

4. Implementation
This chapter describes the implementations of

our demonstration system that realizes all
features aforementioned, including modifications
of the kernel to ensure higher security.

4.1. Implementations for read-only mounting.
4.1.1. Modifications of linuxrc
To keep the complete compatibility with ext2

filesystem that are stored in media formatted
other than ext2 filesystem, we didn't directly copy
the directory tree. We made a loopback image file
of ext2 filesystem and copied the directory tree to
the loopback image file.

See the chapter "The boot sequences of Linux"
for the behavior of linuxrc.

4.1.2. Relocating directory structure.
Prepare a writable partition and mount it.
Move the directories that have to be writable to

the writable partition, and create symbolic links
from the directories in read-only partition to the
directories in writable partition.

Generate a script program that automatically
creates directories in writable partition, which is
needed only if the writable partition is volatile (i.e.
tmpfs).

We don't explain detailed procedure here.

4.2. Implementations for improving security.
4.2.1. Modifications of kernel
(1) Restricting mount operations

We modified the kernel so that the kernel
rejects mount requests (and remount requests)
that attempt to mount on directories that are
not allowed by policy. Actually, register the
given combination of mountpoint and device
file when the sys_mount() was called with
keyword "protect". On the subsequent calls of
sys_mount(), the kernel checks the combination
of mountpoint and device file and rejects the
request if the combination is not registered.
The chance of registration is only once so that
the cracker can't append combinations of
mountpoint and device file, and the registered
configuration remains until reboot.
(2) Restricting chroot operations

There is a possibility that a cracker who
deprived the root privileges creates a directory
tree oriented from writable partitions such as
/var, and run programs after chroot'ed to that
partition. To prevent such scenario from being
happened, we modified the kernel so that the
kernel rejects chroot requests that attempts to
chroot to directories that are not allowed by
policy. Actually, register the given directories
when the sys_chroot() was called with keyword
"protect:". On the subsequent calls of
sys_chroot(), the kernel checks the directory
and rejects the request if the directory is not
registered. The chance of registration is only
once, and the registered configuration remains
until reboot.
(3) Restricting pivot_root operations

There is a possibility that a cracker who
deprived the root privileges creates a directory
tree oriented from writable partitions such as
/var, and run programs after exchanging the "/"
and the writable directory. To prevent such
scenario from being happened, we modified the
kernel so that the kernel rejects pivot_root
requests if it is once forbidden by policy.
Actually, call the sys_pivot_root() with keyword
"protect", and on the subsequent calls of
sys_pivot_root() are unconditionally forbidden.
(4) Restricting execve operations

This modification is unrelated to
vulnerabilities that can't be solved by read-only

5

mounting. This is a modification to reduce the
possibility of processes being hijacked by a
cracker. Many codes that attempt to hijack the
system uses the system call execve() to launch
a shell or a terminal. By discarding the
privilege to call execve() when the process no
longer need to launch a new program, it
becomes difficult for crackers to hijack.
Actually, we added a Boolean variable in the
"struct task_struct" (database used to manage
processes). The kernel checks this variable
when sys_execve() is called. If sys_execve() was
called with the keyword "protect:", the kernel
turns on this variable of each process whose ID
is given with the keyword so that the processes
whose IDs are given with the keyword won't be
able to call sys_execve(). This variable remains
until the process terminates, and inherited by
the child processes created afterwards. The
current implementation is to forbid
unconditionally, but it will be possible to allow
execution of only specific programs (for
example, allow execution of java compiler
programs for java processes).
4.2.2. Newly created utility programs
These utilities are wrapper programs that

enable extensions of the modified kernel
aforementioned, and assumed to be used by the
legal administrator. (We assume the legal
administrator defines policy before a cracker
deprives the administrator's privileges.)

(1) limitmount
A wrapper program that calls sys_mount()

with the keyword "protect". Use this program
within the bootup scripts under the /etc/rc.d
directory so that this program is invoked
automatically on system's bootup procedure.
(2) limitchroot

A wrapper program that calls sys_chroot()
with the keyword "protect:". Use this program
within the bootup scripts under the /etc/rc.d
directory so that this program is invoked
automatically on system's bootup procedure.
(3) limitpivot

A wrapper program that calls
sys_pivot_root() with the keyword "protect".

Use this program within the bootup scripts
under the /etc/rc.d directory so that this
program is invoked automatically on system's
bootup procedure.
(4) limitexec

A wrapper program that calls sys_execve()
with the keyword "protect:". This program can
be invoked as many times as the administrator
wants.
4.2.3. The value of these modifications.
The modifications to the kernels

aforementioned are made as
countermeasurements against vulnerabilities
that cannot be solved by write protection only. If
the administrator doesn't worry about these
vulnerabilities, the administrator can operate
Linux with root filesystem mounted for read-only
without using our modified kernel. But we don't
recommend using normal kernel. The other way
around, we think the standard kernel wants some
countermeasurements against vulnerabilities we
have mentioned in this paper.

4.3. Implementations for building chroot'ed
environments

It is important that chroot'ed processes can
access minimal files if the administrator wishes
to introduce isolated environments using chroot.
Even if the administrator introduced isolated
environments, if the processes can access to
unnecessary devices and programs, the damage
becomes bigger when the isolated environments
are cracked. But it is not easy to pick out minimal
files. Therefore, we developed a custom kernel
that can automatically pick up only necessary
files that are needed for applications running in
isolated environments.

The principle is "Record all pathnames that are
passed to functions that converts from pathnames
into inode structure". But this is not enough, for
this will pick out all pathnames accessed by all
processes but we want only pathnames accessed
by isolated applications. Therefore, we added a
variable to the "struct task_struct" that holds the
process ID that called the chroot() for the last
time so that the kernel can determine whether a
process is running in an isolated environment or

6

not by checking the value of this variable
whenever the process requests a pathname. When
the chroot() is called, the process ID is recorded.
Since the "struct task_struct" is inherited by child
processes, it is possible to group by process ID by
performing chroot for once.

Next, we explain how to obtain the pathnames.
To get the list of files that are accessed in a
chroot'ed environment, it is possible to copy all
files into the chroot'ed environment prior to
chroot and then delete files that were not
accessed. But actually, we needn't to do so. We
can chroot to the current "/" directory. By calling
the chroot(), the process ID is recorded in the
"struct task_struct". In this way, we can get only
the files that are accessed by chroot'ed processes
easily and cover all necessary files because the
range of accessible files doesn't change.

To implement this feature, we made the

following six modifications to the kernel.
(1) include/linux/sched.h：task_struct

Add a variable that holds a process ID.
(2) fs/open.c：sys_chroot()

Records the process ID into the variable in
(1).

(3) fs/namei.c：link_path_walk()
Pass the requested pathname to the

function in (6).
(4) fs/stat.c：sys_readlink()

This is a readout window of accumulated
logs kept in the function in (6). We don't use
syslog, for the function printk() is not thread-safe
and the logs may get corrupted.

(5) Newly created function that calculated the
current directory of the current process.

(6) Newly created function that accumulates
logs. If the given pathname is a relative
pathname, converts into an absolute pathname by
calling the function in (5).

Since we use an existent function as a readout

window, we needn't to export a newly created
function from the kernel as a system call.
Therefore, this implementation is applicable to
other kernels that have more system calls.

Also, we developed the following tools that read

the access logs and copy files into the isolated
environment.

(1) A program that reads access logs using
readlink().

(2) A program that copies minimal files into the
isolated environment that exist and are accessed
by the chroot'ed processes based on access logs.

We confirmed that we can run Apache and

Tomcat in chroot'ed environments with minimal
files needed for these services using this kernel.
Some files such as WWW contents that won't be
accessed by just starting and terminating Apache
need to be copied manually, but it won't matter
because the pathnames of such files are obvious.
This kernel is not applicable to this system, this
is widely applicable when building chroot'ed
environment.

5. Existent technologies used in this system
We can't explain the actual procedure of
making "/" partition that can be mounted for
read-only due to limitations of space. Instead,
we introduce existent technologies and tools
used by this system and the result of
performance test.

5.1. Technologies used in this system
5.1.1. devfs
devfs is a filesystem managed by the kernel

space that provides the contents of /dev directory.
At the point of kernel version 2.4.18-14, devfs is
considered as EXPERIMENTAL and disabled by
default. But by mounting devfs on /dev directory,
it becomes possible to mount "/" directory as
read-only.

Since devfs also provides the functionality of
devpts filesystem, disable devpts when enabling
devfs at the kernel compilation time.

5.1.2. iptables
Iptables is used to set up, maintain, and

inspect the tables of IP packet filter rules in the
Linux kernel. Several different tables may be
defined. Each table contains a number of built-in

7

chains and may also contain user-defined chains.
Each chain is a list of rules which can match a

set of packets. Each rule specifies what to do with
a packet that matches. This is called a 'target',
which may be a jump to a user-defined chain in
the same table.

By using this function, it is possible to redirect
packets that arrived at privileged ports (ports
whose numbers are less than 1024) to other ports.
Therefore, applications that require root
privileges only for opening privileged ports can
start without root privileges.

5.1.3. Named pipes (FIFO)
A FIFO special file (a named pipe) is similar to

a pipe, except that it is accessed as part of the file
system. It can be opened by multiple processes for
reading or writing. When processes are
exchanging data via the FIFO, the kernel passes
all data internally without writing it to the file
system. Thus, the FIFO special file has no
contents on the file system, the file system entry
merely serves as a reference point so that
processes can access the pipe using a name in the
file system.

Therefore, it is possible to use FIFO in a
filesystem that is physically write-protected.
There is a limitation that FIFO cannot do seek
operation, but the applications can write to FIFO
as well as regular files in a writable filesystem if
the FIFO is used for append only such as log files.

5.1.4. ISO filesystem
ISO filesystem is used widely by CD-ROMs.

The program mkisofs is used to create ISO image
files.

mkisofs is effectively a pre-mastering program
to generate an ISO9660/JOLIET/HFS hybrid
filesystem. mkisofs takes a snapshot of a given
directory tree, and generates a binary image
which will correspond to an ISO9660 or HFS
filesystem when written to a block device.

mkisofs is capable of generating the System
Use Sharing Protocol records (SUSP) specified by
the Rock Ridge Interchange Protocol. This is used
to further describe the files in the iso9660
filesystem to a unix host, and provides
information such as longer filenames, uid/gid,

posix permissions, symbolic links, block and
character devices.

5.2. The features of demonstration system
 The system files and programs are never

tampered with.
 Provides two services (Apache and Tomcat),

which the application effect of this approach
is considered larger.

 These services can't access to system files
and log files even if cracked, for they run
under the chroot'ed environment.

 The administrator's privileges won't be
deprived via these services, for these services
don't require the administrator's privileges
from the beginning.

 The access logs won't be deleted even if
cracked, for FIFOs are used for access logs.

5.3. The performance of demonstration system
Our approach doesn't affect the system's

performance because we didn't make massive
modifications to the kernel like MAC. We
measured the performance of transferring WWW
contents kept in the root filesystem recorded in a
CD-R.

Server: Dell PowerEdge 1550
CPU: Pentium III 1GHz
RAM: 1280MB
CD-ROM: Max. X24 read
Size of WWW data: 40170370 Bytes
Measurement method: Download using wget

The result is shown in Fig. 3. For the first trial

it is very slow, but for the subsequent trials they
aren't. For the first trial, the necessary files are
searched from CD-R and read and transferred,
but for the subsequent trials, the necessary data
is transferred from cache that is on the RAM.

Fig. 3 The transfer speed of WWW contents

6. Reference: The boot sequences of Linux
In this chapter we briefly review the boot

sequence of Linux and explain about
modifications we made to provide services using
read-only mounting.

6.1. From the boot to the invocation of linuxrc
（1） The bootloader program reads

compressed kernel image file (vmlinuz) and
decompresses it onto RAM, and gives control
to the kernel.

（2） The vmlinuz reads a file named
initrd.img and decompresses it onto RAM and
mount it on "/" directory.

（3） The vmlinuz executes a program named
linuxrc that is located in the "/" directory of
decompressed image. The linuxrc is a script
and interpreted by nash (very compact shell
program) that is dedicated for running linuxrc
script.

6.2. The role of linuxrc and modifications we
made

The linuxrc performs mainly the following two
tasks.
・ Load device driver modules that are needed

for mounting real root device (usually a
HDD).

・ Mount the real root device for read-only.
(During this task, pivot_root() is called to
switch the "/" directory.)

Our method mounts root filesystem using
loopback so that the administrators can do
version control easily. Therefore, we added a task
that mounts pre-created image file that contains

the contents of root filesystem in addition to
standard tasks listed above.

6.3. After the invocation of /sbin/init
When the execution of initrd.img finished, the

root filesystem is already mounted, and the
kernel gives control to /sbin/init. /sbin/init
executes /etc/rc.sysinit script. In this script, root
filesystem is remounted for read-write. After this
script, /sbin/init enters to the specified runlevel
and executes startup scripts for that runlevel.
Finally, it becomes possible for users to login.

We made the following modifications in startup
scripts so that the services won't abort due to the
root filesystem remaining mounted for read-only.

・ Comment out the writability tests used to
test the user is root

・ Prepare the contents of /dev directory (if
devfs is not used)

7. Possibility of applying our method

7.1. The use of media other than CD-R
We used CD-R as a recording medium, but it is

impossible to use CD-R for protecting massive
data due to the medium's capacity limitation. But
the technique of mounting ext2-formatted root
filesystem using loopback allows users use
arbitrary media formatted with arbitrary
filesystem. Therefore, it is possible to use (for
example) DVD-R as well.

Also, HDDs that can do write protection at
hardware level (i.e. independent with OS) are
coming to market. By combining with such
products, it is possible to protect massive amount
of data from tampering without loosing
performance.

7.2. Other applications of read-only mounting
The significance of read-only mounting is not

limited to preventing configurations of system
and applications.

In standard Linux, all information including
access logs become unreliable if the
administrator's privileges were deprived (because
the administrator is free from access controls).
But the policy files remains reliable if they are
kept in a read-only medium using our method.

8

9

The administrator can be confident in programs
for incident detection and incident response kept
in a read-only medium even after the
administrator's privileges were deprived.

7.3. Distribution Dependency
We think that it is possible to apply our

approach to distributions other than Red Hat
Linux, for our approach doesn't entail massive
modifications of kernels.

The patches and the tools our system uses are
very small, and the modifications are closed
within specific system calls. We think it is easy to
port to other distribution’s kernels.

8. Conclusion
The MAC implementations on Linux such as

SELinux, RSBAC[7] demonstrated the possibility
of improving Linux's security. But they entail
management of enormous quantity of policy and
loss of performance due to authorization of
system call requests, and it is difficult to say that
they are aiming at everyone.

The method described in this paper that
mounts root filesystem for read-only can prevent
files from being tampering with even the
administrator's privileges are deprived, without
entailing management of policy. This method is
effective by itself, but it offers stronger protection
by applying tiny patches to the kernel that
restricts chroot, pivot_root and mount operations.
We think that these patches are also effective for
systems that don't mount root filesystem for
read-only.

The technologies such as devfs, iptables and
chroot are already incorporated into the kernel
and used, and the usage of these technologies in
this paper is nothing new. The restriction of
execve itself is not versatile and the applicable
scope is limited, but this is a result of attempts
for improving Linux's security with minimal
modifications to Linux. We hope you find our
approach informative.

Acknowledgment: During this research, we
referred to Mr. YAMAMORI Takenori's article
and his website [8]. Mr. YAMAMORI not only
agreed readily to be listed in the bibliography but

also pointed some of errors in our manuscript. We
sincerely thank Mr. YAMAMORI. Also, we were
patiently supported by Tetsuo Handa, NTT DATA
CUSTOMER SERVICE CORPORATION for
developing the prototype of TOMOYO Linux. We
would like to thank Mr. Handa.

Bibliography
[1] Peter A. Loscocco et al, The Inevitability of

Failure: The Flawed Assumption of Security
in Modern Computer Environments

[2] United States. Department of Defense,
TCSEC (Trusted Computer System
Evaluation Criteria) DDS-2600-5502-87,
1985

[3] National Security Agency,
Security-Enhanced Linux,
http://www.nsa.gov/selinux/

[4] Serge E. Hallyn, Domain and Type
Enforcement for Linux, 4th Annual Linux
Showcase & Conference, 2000

[5] Chris Wright and Crispin Cowan et al, Linux
Security Module Framework

[6] Richard Gooch, Linux Devfs (Device File
System),
/usr/src/linux-2.4/Documentation/filesystems/
devfs/README,
http://www.atnf.csiro.au/people/rgooch/linux/
docs/devfs.html

[7] Rule set based access control (RSBAC) for
linux, http://www.rsbac.org

[8] YAMAMORI Takenori, "Let's create original
Linux live on CD-ROM",
Software Design vol. December 2002,
http://www15.big.or.jp/~yamamori/sun/cdlinu
x/ (Written in Japanese),
http://www15.big.or.jp/~yamamori/sun/tech-li
nux-2/index_e.html

Notes
This is a translation of the original paper,

which was written in Japanese and published in
Linux Conference 2003 held in Japan. You can
obtain the original paper from the following URL.

http://sourceforge.jp/projects/tomoyo/document/l

10

c2003.pdf

The technology shown in this paper was

incorporated into TOMOYO Linux.
TOMOYO Linux was released on November, 11,

2005. You can get more information at the
following URLs.

http://tomoyo.sourceforge.jp/
http://sourceforge.jp/projects/tomoyo/

	1.
	1. Introduction
	2. Tamper protection by mounting read-only.
	2.1. The merits of read-only mounting.
	2.2. The problems in mounting Linux's root filesystem read-only.
	2.2.1. Directories that needs to be writable in Linux.
	2.2.2. The way to prepare writable directories.

	2.3. An example configuration
	3. Vulnerabilities other than tampering and countermeasurements.
	3.1. Mounting writable filesystem on arbitrary directories.
	3.2. Execution of chroot() and pivot_root()

	4. Implementation
	4.1. Implementations for read-only mounting.
	4.1.1. Modifications of linuxrc
	4.1.2. Relocating directory structure.

	4.2. Implementations for improving security.
	4.2.1. Modifications of kernel
	4.2.2. Newly created utility programs
	(3) limitpivot
	(4) limitexec

	4.2.3. The value of these modifications.

	4.3. Implementations for building chroot'ed environments

	5. Existent technologies used in this system
	5.1. Technologies used in this system
	5.1.1. devfs
	5.1.2. iptables
	5.1.3. Named pipes (FIFO)
	5.1.4. ISO filesystem

	5.2. The features of demonstration system
	5.3. The performance of demonstration system

	6. Reference: The boot sequences of Linux
	6.1. From the boot to the invocation of linuxrc
	6.2. The role of linuxrc and modifications we made
	6.3. After the invocation of /sbin/init

	7. Possibility of applying our method
	7.1. The use of media other than CD-R
	7.2. Other applications of read-only mounting
	7.3. Distribution Dependency

	8. Conclusion

